• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 25
  • 20
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 228
  • 228
  • 56
  • 52
  • 45
  • 36
  • 23
  • 20
  • 18
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Surface immobilization of plant cells

Archambault, Jean January 1987 (has links)
A novel technique was developed to immobilize plant cells. The cells are deposited on a surface of man-made fibrous material which provides for strong binding of the plant tissue biomass growing in the submerged culture. It was shown that the plant cells need to be fully viable for the attachment process to occur. / The scale-up of this technique to laboratory size specifically designed bioreactors was performed successfully. The cell immobilizing matrix was formed into a vertical spirally wound configuration to provide for a high immobilizing area-to-volume ratio (0.8-1.2 cm$ sp{-1}$). A modified airlift (riser-to-downcomer area ratio of 0.03 and vessel height-to-diameter (H/D ratio of 3) and a low H/D ($ sim$1.5) mechanically stirred vessel delivered the optimum bioreactor performance characterized by low foaming of the broth and highly efficient plant cell attachment and retention ($ geq$96%). / The growth of Catharantus roseus plant cells was investigated in these bioreactors. This process was found not to be mass transfer limited above minimal mild mixing and aeration levels ensuring sufficient supply of nutrients, especially oxygen (k$ sb{ rm L}$a $ sim$ 10-15 h$ sp{-1}$) to the immobilized biomass. / The gentle surface immobilization technique developed in this work did not hinder the biosynthesis potential of the SIPC. In fact, it appeared to induce a partial secretion of some valuable compounds into the culture medium. The mildness, easiness, efficiency, mass transfer characteristics, scale-up potential and biomass loading capacity (11-13 g d.w./L) of the surface immobilization technique make it superior to all other immobilization techniques used to culture plant cells. In addition, its bioreactor overall biomass concentration compares favourably to suspended plant cell concentrations attainable in bioreactors (15-20 g d.w./L).
82

Tissue culture studies on Peperomia clusifolia Hook. and Strongylodon macrobotrys A. Gray.

Peters, Deborah. January 1982 (has links)
Tissue culture studies were carried out on two ornamental plant species, Strongylodon macrobotrys A. Gray and Peperomia clusifolia Hook. Successful in vitro regeneration of plantlets was achieved in the latter species, using leaf and stem explants. The basal medium of Murashige and Skoog (1962), in combination with various levels of NAA and K, was utilised. Strongylodon proved refractory to both establishment of a thriving callus culture and in vitro formation of roots and shoots. Several media were utilised, Miller's (1963) medium proving the most successful for the production of callus. Different combinations of the growth regulators NAA, IBA, BA and K were used to determine optimum levels of these substances for callus production. Root/shoot induction studies were carried out using the basal medium of Miller (1963) plus various concentrations of IBA in combination with K or BA. Alternatively,the basal medium was used without added growth regulators. Internodes, nodal segments, leaves, pulvini, flower parts and seeds were used in the study. No plantlets were obtained from Strongylodon explants. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1982.
83

Effects of imperfect mixing in suspended plant and animal cell cultures

Cheung, Caleb Kin Lok, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
A common problem observed in large-scale cell cultivation is reduced culture performance compared with small-scale processes due to the existence of concentration gradients caused by poor mixing. Small-scale simulations using microbial cell suspensions have shown that circulation of cells through concentration gradients of oxygen, pH and glucose can result in reduction of cell growth and product formation similar to the effects observed in large-scale bioreactors. This study was aimed at using scale-down studies to investigate poor mixing in large-scale bioreactors used for suspended plant and animal cell culture. Two plant cell suspensions and a hybridoma cell line were used in this work. The range of oxygen transfer coefficients achieved in the hybridoma and plant suspensions were about 50???20 h-1 and 12???6 h-1, respectively. One-vessel simulation was developed to induce fluctuations of dissolved oxygen tension in a 2-L bioreactor using intermittent sparging of air and nitrogen. The effect of dissolved oxygen fluctuations on the cells was examined by comparing the performance of the cultures with those operated at constant dissolved oxygen tension. In the hybridoma suspension culture, only slight effects on cell growth were observed at circulation times above 300 s. No effect on the specific glucose uptake rate or antibody production was observed at the circulation times tested. Analysis of gene expression for selected hypoxia-related genes also suggested that the overall effect was limited. In plant cell suspensions, the specific growth rates and biomass yields on total sugar in the cultures under fluctuating dissolved oxygen tension were essentially the same as those at constant dissolved oxygen tension for both transgenic Nicotiana tabacum and Thalictrum minus. Under fluctuating dissolved oxygen tension, no effect on antibody accumulation was observed in transgenic N. tabacum suspensions, but a decrease in berberine accumulation was observed in T. minus. From the results, it can be concluded that only minimal effects due to the development of concentration gradients would be expected in large-scale bioreactors used for the cultivation of the hybridoma and plant cell suspensions tested in this work.
84

Production and transformation of tobacco and Brassica containing macrochloroplasts

Chikkala, Veera, veera.chikkala@rmit.edu.au January 2009 (has links)
Plastid division, sustained by the equilibrium expression and coordination of plastid division genes is vital for the maintenance of plastid populations in dividing plant cells. Macrochloroplasts (MCP), the occurrence of one or a few chloroplasts per cell is due to the imbalance in the expression of plastid division genes. Because of the MCP size and number it was proposed that they may provide better targets for the plastid transformation than the normal (WT) chloroplasts and result in better plastid transformation frequencies. The objective of this research was to produce transgenic plants containing macrochloroplasts by nuclear transformation and then to use these plants as a model for the development of plastid transformation of crop species. By using AtFtsZ1-1 and AtMinD1 as query sequences in the TIGR (U.S.A) and ASTRA (Australia) Brassica oleracea EST databases, this project resulted in the isolation of cauliflower FtsZ1-1 (EU684588) and MinD (EU684589) genes. In addition, AtFtsZ1-1 was used as a control gene for comparison to the cauliflower FtsZ1-1. Binary vectors were constructed to express these genes in tobacco and cauliflower either by Agrobacterium tumefaciens-mediated or PEG-mediated transformation methods. Transgenic tobacco and cauliflower plants with abnormal chloroplasts (MCP, minichloroplasts, honeycomb or doughnut shaped chloroplasts, uneven surface membrane chloroplasts) were developed. Furthermore, the transgenic tobacco and cauliflower plants were examined by PCR, RT-PCR and Southern blotting. In addition, th ese plants were also analysed for the different abnormal chloroplast phenotypes by fluorescence microscopy. This project also generated the first plastid transformants from macrochloroplast bearing tobacco plants via biolistics. After one round of regeneration homoplasmic plastid transformants were obtained from both WT chloroplast and MCP tobacco plants. The homoplasmic nature of plastid transformants were confirmed by PCR and Southern blotting. Plastid expression of GFP in WT and MCP was confirmed by fluorescence/confocal microscopy and western blot analysis. This project showed for the first time the characterisation of cauliflower FtsZ1-1 and MinD plastid division genes in homologous and heterologous systems (cauliflower and tobacco). Moreover, obtaining homoplasmic plastid transformant shoots from one round of regeneration from the MCP containing tobacco plants is reported for the first time in this study. In addition this study explored the effect of transgene expression level on the chloroplast abnormality, highlighting the importance of analysing transgenic tobacco and cauliflower plants at the protein lev el specifically with regard to plastid division genes. The maintenance of MCP phenotype in the regenerated shoots and the requirement of standardisation of MCP containing plants via biolistics for increasing the plastid transformation frequency were also examined.
85

A Substantive Theory to explain the Impact of Living with a Chronic Wound whilst receiving Conflicting or Inappropriate Advice or Care.

Minnis, Andrea Margaret Bennett, andreaminnis@bigpond.com January 2009 (has links)
It is estimated that over 200,000 Australians have problem or chronic wounds at any one time (Australian Wound Management Association, 2008). Over the past 4 decades while there has been significant advancement in wound care, a high proportion of wounds become chronic. Despite the availability of wound care resources and specialist services, there remains an inconsistency in the management of chronic wounds that impacts both on the quality of life of individuals with chronic wounds and the health care budget (Harding 2002). Using a Grounded theory approach, the aim of this study was to explore and describe the impact of living with a chronic wound and findings indicate that individuals living with a chronic wound are receiving conflicting or inappropriate advice and care. Individuals living with a chronic wound experience a life of uncertainty related to the struggle to endure a wounded body and the layers of professional care they receive. When they are provided with conflicting or inappropriate advice and treatment, inconsistencies of care and poor coordination of care, layers of unnecessary burden are added to their experience. The uncertainty and dissonance individuals are faced with, leads them to question their care, themselves and the expertise and professionalism of their treating health professionals. As a result, they experienced a loss of respect and trust for their treating health professionals and a loss of confidence in their care. Chronic wounds impose of individuals, an intense burden of physical suffering, cause major disruption to the normality of their lives, and often entail a constant personal struggle to secure appropriate care and understanding from their treating health professionals. In order to enable individuals living with chronic wounds to develop appropriate coping strategies, it is essential that health professionals: understand the burden of suffering associated with living with a chronic wound; ensure that they develop and maintain a high level of knowledge with regards to contemporary wound care practices; ensure that their clientele are provided with high quality care information that is based on the best available evidence; ensure continuity of care; and foster quality professional-client relationships that negates the need for individuals to have to constantly question their care.
86

Effects of imperfect mixing in suspended plant and animal cell cultures

Cheung, Caleb Kin Lok, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
A common problem observed in large-scale cell cultivation is reduced culture performance compared with small-scale processes due to the existence of concentration gradients caused by poor mixing. Small-scale simulations using microbial cell suspensions have shown that circulation of cells through concentration gradients of oxygen, pH and glucose can result in reduction of cell growth and product formation similar to the effects observed in large-scale bioreactors. This study was aimed at using scale-down studies to investigate poor mixing in large-scale bioreactors used for suspended plant and animal cell culture. Two plant cell suspensions and a hybridoma cell line were used in this work. The range of oxygen transfer coefficients achieved in the hybridoma and plant suspensions were about 50???20 h-1 and 12???6 h-1, respectively. One-vessel simulation was developed to induce fluctuations of dissolved oxygen tension in a 2-L bioreactor using intermittent sparging of air and nitrogen. The effect of dissolved oxygen fluctuations on the cells was examined by comparing the performance of the cultures with those operated at constant dissolved oxygen tension. In the hybridoma suspension culture, only slight effects on cell growth were observed at circulation times above 300 s. No effect on the specific glucose uptake rate or antibody production was observed at the circulation times tested. Analysis of gene expression for selected hypoxia-related genes also suggested that the overall effect was limited. In plant cell suspensions, the specific growth rates and biomass yields on total sugar in the cultures under fluctuating dissolved oxygen tension were essentially the same as those at constant dissolved oxygen tension for both transgenic Nicotiana tabacum and Thalictrum minus. Under fluctuating dissolved oxygen tension, no effect on antibody accumulation was observed in transgenic N. tabacum suspensions, but a decrease in berberine accumulation was observed in T. minus. From the results, it can be concluded that only minimal effects due to the development of concentration gradients would be expected in large-scale bioreactors used for the cultivation of the hybridoma and plant cell suspensions tested in this work.
87

Effects of imperfect mixing in suspended plant and animal cell cultures

Cheung, Caleb Kin Lok, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
A common problem observed in large-scale cell cultivation is reduced culture performance compared with small-scale processes due to the existence of concentration gradients caused by poor mixing. Small-scale simulations using microbial cell suspensions have shown that circulation of cells through concentration gradients of oxygen, pH and glucose can result in reduction of cell growth and product formation similar to the effects observed in large-scale bioreactors. This study was aimed at using scale-down studies to investigate poor mixing in large-scale bioreactors used for suspended plant and animal cell culture. Two plant cell suspensions and a hybridoma cell line were used in this work. The range of oxygen transfer coefficients achieved in the hybridoma and plant suspensions were about 50???20 h-1 and 12???6 h-1, respectively. One-vessel simulation was developed to induce fluctuations of dissolved oxygen tension in a 2-L bioreactor using intermittent sparging of air and nitrogen. The effect of dissolved oxygen fluctuations on the cells was examined by comparing the performance of the cultures with those operated at constant dissolved oxygen tension. In the hybridoma suspension culture, only slight effects on cell growth were observed at circulation times above 300 s. No effect on the specific glucose uptake rate or antibody production was observed at the circulation times tested. Analysis of gene expression for selected hypoxia-related genes also suggested that the overall effect was limited. In plant cell suspensions, the specific growth rates and biomass yields on total sugar in the cultures under fluctuating dissolved oxygen tension were essentially the same as those at constant dissolved oxygen tension for both transgenic Nicotiana tabacum and Thalictrum minus. Under fluctuating dissolved oxygen tension, no effect on antibody accumulation was observed in transgenic N. tabacum suspensions, but a decrease in berberine accumulation was observed in T. minus. From the results, it can be concluded that only minimal effects due to the development of concentration gradients would be expected in large-scale bioreactors used for the cultivation of the hybridoma and plant cell suspensions tested in this work.
88

Effects of imperfect mixing in suspended plant and animal cell cultures

Cheung, Caleb Kin Lok, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
A common problem observed in large-scale cell cultivation is reduced culture performance compared with small-scale processes due to the existence of concentration gradients caused by poor mixing. Small-scale simulations using microbial cell suspensions have shown that circulation of cells through concentration gradients of oxygen, pH and glucose can result in reduction of cell growth and product formation similar to the effects observed in large-scale bioreactors. This study was aimed at using scale-down studies to investigate poor mixing in large-scale bioreactors used for suspended plant and animal cell culture. Two plant cell suspensions and a hybridoma cell line were used in this work. The range of oxygen transfer coefficients achieved in the hybridoma and plant suspensions were about 50???20 h-1 and 12???6 h-1, respectively. One-vessel simulation was developed to induce fluctuations of dissolved oxygen tension in a 2-L bioreactor using intermittent sparging of air and nitrogen. The effect of dissolved oxygen fluctuations on the cells was examined by comparing the performance of the cultures with those operated at constant dissolved oxygen tension. In the hybridoma suspension culture, only slight effects on cell growth were observed at circulation times above 300 s. No effect on the specific glucose uptake rate or antibody production was observed at the circulation times tested. Analysis of gene expression for selected hypoxia-related genes also suggested that the overall effect was limited. In plant cell suspensions, the specific growth rates and biomass yields on total sugar in the cultures under fluctuating dissolved oxygen tension were essentially the same as those at constant dissolved oxygen tension for both transgenic Nicotiana tabacum and Thalictrum minus. Under fluctuating dissolved oxygen tension, no effect on antibody accumulation was observed in transgenic N. tabacum suspensions, but a decrease in berberine accumulation was observed in T. minus. From the results, it can be concluded that only minimal effects due to the development of concentration gradients would be expected in large-scale bioreactors used for the cultivation of the hybridoma and plant cell suspensions tested in this work.
89

Effects of imperfect mixing in suspended plant and animal cell cultures

Cheung, Caleb Kin Lok, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
A common problem observed in large-scale cell cultivation is reduced culture performance compared with small-scale processes due to the existence of concentration gradients caused by poor mixing. Small-scale simulations using microbial cell suspensions have shown that circulation of cells through concentration gradients of oxygen, pH and glucose can result in reduction of cell growth and product formation similar to the effects observed in large-scale bioreactors. This study was aimed at using scale-down studies to investigate poor mixing in large-scale bioreactors used for suspended plant and animal cell culture. Two plant cell suspensions and a hybridoma cell line were used in this work. The range of oxygen transfer coefficients achieved in the hybridoma and plant suspensions were about 50???20 h-1 and 12???6 h-1, respectively. One-vessel simulation was developed to induce fluctuations of dissolved oxygen tension in a 2-L bioreactor using intermittent sparging of air and nitrogen. The effect of dissolved oxygen fluctuations on the cells was examined by comparing the performance of the cultures with those operated at constant dissolved oxygen tension. In the hybridoma suspension culture, only slight effects on cell growth were observed at circulation times above 300 s. No effect on the specific glucose uptake rate or antibody production was observed at the circulation times tested. Analysis of gene expression for selected hypoxia-related genes also suggested that the overall effect was limited. In plant cell suspensions, the specific growth rates and biomass yields on total sugar in the cultures under fluctuating dissolved oxygen tension were essentially the same as those at constant dissolved oxygen tension for both transgenic Nicotiana tabacum and Thalictrum minus. Under fluctuating dissolved oxygen tension, no effect on antibody accumulation was observed in transgenic N. tabacum suspensions, but a decrease in berberine accumulation was observed in T. minus. From the results, it can be concluded that only minimal effects due to the development of concentration gradients would be expected in large-scale bioreactors used for the cultivation of the hybridoma and plant cell suspensions tested in this work.
90

Effects of imperfect mixing in suspended plant and animal cell cultures

Cheung, Caleb Kin Lok, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
A common problem observed in large-scale cell cultivation is reduced culture performance compared with small-scale processes due to the existence of concentration gradients caused by poor mixing. Small-scale simulations using microbial cell suspensions have shown that circulation of cells through concentration gradients of oxygen, pH and glucose can result in reduction of cell growth and product formation similar to the effects observed in large-scale bioreactors. This study was aimed at using scale-down studies to investigate poor mixing in large-scale bioreactors used for suspended plant and animal cell culture. Two plant cell suspensions and a hybridoma cell line were used in this work. The range of oxygen transfer coefficients achieved in the hybridoma and plant suspensions were about 50???20 h-1 and 12???6 h-1, respectively. One-vessel simulation was developed to induce fluctuations of dissolved oxygen tension in a 2-L bioreactor using intermittent sparging of air and nitrogen. The effect of dissolved oxygen fluctuations on the cells was examined by comparing the performance of the cultures with those operated at constant dissolved oxygen tension. In the hybridoma suspension culture, only slight effects on cell growth were observed at circulation times above 300 s. No effect on the specific glucose uptake rate or antibody production was observed at the circulation times tested. Analysis of gene expression for selected hypoxia-related genes also suggested that the overall effect was limited. In plant cell suspensions, the specific growth rates and biomass yields on total sugar in the cultures under fluctuating dissolved oxygen tension were essentially the same as those at constant dissolved oxygen tension for both transgenic Nicotiana tabacum and Thalictrum minus. Under fluctuating dissolved oxygen tension, no effect on antibody accumulation was observed in transgenic N. tabacum suspensions, but a decrease in berberine accumulation was observed in T. minus. From the results, it can be concluded that only minimal effects due to the development of concentration gradients would be expected in large-scale bioreactors used for the cultivation of the hybridoma and plant cell suspensions tested in this work.

Page generated in 0.1349 seconds