• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Causes and Consequences of Plant Spatial Patterns in Natural and Experimental Great Basin (USA) Plant Communities

Rayburn, Andrew P. 01 December 2011 (has links)
The processes by which plant spatial patterns are formed, and the effects of those patterns on plant community dynamics, remain important areas of research in plant ecology. Plant spatial pattern formation has been linked to many ecological processes that act to structure plant communities at different spatiotemporal scales. Past studies of pattern formation are common, but recent methodological advances in data collection and analysis have permitted researchers to conduct more advanced observational studies of pattern formation in space and time. While studies of the effects of plant spatial patterns were formally rare, they have increased in the last decade as new types of experiments and analysis have been developed to better understand the myriad effects of plant patterns on community dynamics. My dissertation research examined both the causes and consequences of plant spatial patterns in the context of natural and experimental Great Basin semi-arid plant communities. In both cases, I implemented novel methodologies for data collection, experimental design, and data analysis in an attempt to address current gaps in knowledge related to the processes by which plant spatial patterns are formed, as well as the effect of plant spatial patterns on community dynamics. The results inform both basic and applied plant ecology, and set the stage for further research on the causes and consequences of plant spatial patterns in semi-arid plant communities.
2

Grass-Shrub Spatial Associations Over Precipitation and Grazing Gradients in the Great Basin, USA

Holthuijzen, Maike F. 01 May 2015 (has links)
Plant spatial patterns have been studied to gain insight into plant interactions such as competition and facilitation (positive plant interactions). The stress gradient hypothesis predicts that as environmental stress increases facilitation dominates, while competition dominates in less stressful conditions. Beneficial plants (nurses) can create favorable abiotic conditions for subanopy plants. Additionally, palatable herbaceous species growing under nurse shrub canopies benefit from physical protection. I investigated spatial associations between Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and three native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata) across a rainfall gradient in the Great Basin, USA. I also explored the effect of grazing on grass-shrub spatial associations. I hypothesized that positive shrub-grass spatial associations would become more frequent at lower rainfall levels; I further hypothesized that 1) at intermediate levels of stress, positive grass-shrub spatial associations would dominate and 2) at extreme levels of stress, positive grass-shrub spatial associations and interactions would no longer dominate. At high moisture stress, the addition of grazing stress may limit the nurse’s ability to provide to benefits to subcanopy plants. Cover of P. secunda was greater in shrub canopy microsites than interspaces at low to moderate levels of rainfall. Cover and density of E. elymoides were greater in sagebrush canopies over most rainfall levels. Elymus elymoides and P. spicata were taller and narrower in basal width and less likely to be grazed in canopy versus interspace microsites. I next investigated the effects of grazing intensity over a rainfall gradient and found a significant interaction of rainfall and microsite on P. secunda cover. Poa secunda formed positive interactions with A. tridentata at lower rainfall levels, regardless of grazing intensity. Its cover was significantly greater in interspaces at high rainfall compared to low rainfall sites. Elymus elymoides density was greater in canopy vs. interspace microsites, regardless of rainfall level or grazing intensity. Plant spatial associations can indicate which nurse microsites are favorable to plant growth and may improve seeding or planting success during ecological restoration. My results suggest that exploiting sagebrush canopy microsites for restoration of native perennial grasses would improve plant establishment, growth or survival particularly in drier areas.

Page generated in 0.0795 seconds