81 |
Ecological significance of polyol concentrations in subarctic lichensDudley, Susan A. January 1984 (has links)
No description available.
|
82 |
Sensible heat flux and evaporation for sparse vegetation using temperature-variance and a dual-source model.Abraha, Michael Ghebrekristos. January 2010 (has links)
The high population growth rate and rapid urbanization that the world is experiencing today has aggravated the competition for the already scarce resource ¡V water ¡V between the agricultural sector and the other economic sectors. Moreover, within the agricultural sector, water is increasingly being used for commercial plantations as opposed to growing food crops, threatening food security. Therefore, it is very important that this scarce resource is managed in an efficient and sustainable manner, for now and future use. This requires understanding the process of evaporation for accurate determination of water-use from agricultural lands. In the past, direct measurements of evaporation have proven difficult because of the cost and complexity of the available equipments, and level of expertise involved. This justifies a quest for relatively simple, accurate and inexpensive methods of determining evaporation for routine field applications. Estimation of sensible heat flux (H) from high frequency air temperature measurements and then calculating latent energy flux (ƒÜE) and hence evaporation as a residual of the shortened surface energy balance equation, assuming that closure is met, is appealing in this sense. Concurrent net irradiance (Rn) and soil heat flux (G) measurements can be conducted with relative ease for use in the energy balance equation. Alternately, evaporation can also be mathematically modelled, using single- or multi-layer models depending on vegetation cover, from less expensive routine meteorological observations. Therefore, the ultimate objective of this study is to estimate and model H and ƒÜE, and thereby evaporation, accurately over sparsely vegetated agricultural lands at low cost and effort. Temperature-variance (TV) and surface renewal (SR) methods, which use high-frequency (typically 2 to 10 Hz) air temperature measurements, are employed for estimation of H. The TV method is based on the Monin and Obukhov Similarity Theory (MOST) and uses statistical measures of the high frequency air temperature to estimate H, including adjustments for stability. The SR method is based on the principle that an air parcel near the surface is renewed by an air parcel from above and, to determine H, it uses higher order air temperature differences between two consecutive sample measurements lagged by a certain time interval. Single- and double-layer models that are based on energy and resistance combination theory were also used to estimate evaporation and H from sparse vegetation. Single- and double-layer models that were extended to include inputs of radiometric temperature in order to estimate H were also used. The transmission of solar irradiance to the soil beneath in sparse canopies is variable and depends on the vegetation density, cover and apparent position of the sun. A three-dimensional radiation interception model was developed to estimate this transmission of solar irradiance and was used as a sub-module in the double-layer models. Estimations of H from the TV (HTV), SR (HSR) and double-layer models were compared against H obtained from eddy covariance (HEC), and the modelled ƒÜE (single- and double-layer) were compared with that obtained from the shortened energy balance involving HEC. Besides, long-term ƒÜE calculated from the shortened energy balance using HTV and HSR were compared with those calculated using HEC. Unshielded and naturally-ventilated fine-wire chromel-constantan thermocouples (TCs), 75 ƒÝm in diameter, at different heights above the ground over sparse Jatropha curcas trees, mixed grassland community and bare fallow land were used to measure air temperature. A three-dimensional sonic anemometer mounted at a certain height above the ground surface was also used to measure virtual temperature and wind speed at all three sites. All measurements were done differentially at 10-Hz frequency. Additional measurements of Rn, G and soil water content (upper 60 mm) were also made. The Jatropha trees were planted in a 3-m plant and inter-row spacing in a 50 m ¡Ñ 60 m plot with the surrounding plots planted to a mixture of Jatropha trees and Kikuyu grass. Average tree height and leaf area index measurements were taken on monthly and bimonthly basis respectively. An automatic weather station about 10 m away from the edge of the Jatropha plot was also used to obtain solar irradiance, air temperature and relative humidity, wind speed and direction and precipitation data. Soil water content was measured to a depth of 1000 mm from the surface at 200 mm intervals. Soil and foliage surface temperatures were measured using two nadir-looking infrared thermometers with one mounted directly above bare soil and the other above the trees. The three-dimensional solar irradiance interception model was validated using measurements conducted on different trees and planting patterns. Solar irradiance above and below tree canopies was measured using LI-200 pyranometer and tube solarimeters respectively. Leaf area density (LAD) was estimated from LAI, canopy shape and volume measurements. It was also determined by scanning leaves using either destructive sampling or tracing method. The performance of the TV method over sparse vegetation of J. curcas, mixed grassland community and fallow land was evaluated against HEC. Atmospheric stability conditions were identified using (i) sensor height (z) and Obukhov length (L) obtained from EC and (ii) air temperature difference between two thermocouple measurement heights. The HTV estimations, adjusted and not adjusted for skewness (actual and estimated) of air temperature (sk), for unstable conditions only and for all stability conditions were used. An improved agreement in terms of slope, coefficient of determination (r2) and root mean square error (RMSE), almost over all surfaces, was obtained when the temperature difference rather than the z/L means of identifying stability conditions was used. The agreement between the HTV and HEC was improved for estimations adjusted for actual sk than not adjusted for sk. Improved agreement was also noted when HTV was adjusted using estimated sk compared to not adjusting for sk over J. curcas. The TV method could be used to estimate H for surfaces with varying homogeneity with reasonable accuracy. Long-term water-use of a fetch-limited sparse vegetation of J. curcas was determined as a residual of the shortened surface energy balance involving HTV and HSR and compared with those estimated using HEC. Concurrent measurements of Rn and G were also performed. The long-term water-use of J. curcas trees calculated from the shortened surface energy balance involving HTV and HSR agreed very well when compared with those obtained from HEC. The seasonal HTV and HSR also agreed very well when compared with HEC. Changes in structure of the canopy and environmental conditions appeared to influence partitioning of the available energy into H and ƒÜE. The seasonal total evaporation for the EC, TV and SR methods amounted to 626, 640 and 674 mm respectively with a total rainfall of 690 mm. Footprint analysis also revealed that greater than 80% of the measured flux during the day originates from within the surface of interest. The TV and SR methods, therefore, offer a relatively low-cost means for long-term estimation of H, and ƒÜE, hence the total evaporation, using the shortened surface energy balance along with measurements of Rn and G. Evaporation and biomass production estimations from tree crops requires accurate representation of solar irradiance transmission through the canopy. A relatively simple three-dimensional, hourly time-step tree-canopy radiation interception model was developed and validated using measurements conducted on isolated trees, hedgerows and tree canopies arranged in tramline mode. Measurements were obtained using tube solarimeters placed 0.5 m from each other starting from the base of a tree trunk in four directions, along and perpendicular to the row up to mid-way between trees and rows. Model-simulations of hourly radiant transmittance were in good agreement with measurements with an overall r2 of 0.91; Willmott.s index of agreement of 0.96; and general absolute standard deviation of 17.66%. Agreement between model-estimations and measurements, however, was influenced by distance and direction of the node from the tree trunk, sky conditions, symmetry of the canopy, and uniformity of the stand and leaf distribution of the canopy. The model could be useful in planning and management applications for a wide range of tree crops. Penman-Monteith (PM) equation and the Shuttleworth and Wallace (SW) model, representing single- and dual-source models respectively, were used to determine the total evaporation over a sparse vegetation of J. curcas from routine automatic weather station observations, resistance parameters and vegetation indices. The three-dimensional solar irradiance interception model was used as a sub-module in the SW model. The total evaporation from the sparse vegetation was also determined as a residual of the shortened surface energy balance using measurements of Rn, G and HEC. The PM equation failed to reproduce the .measured. daily total evaporation during periods of low LAI, with improved agreement with increased LAI. The SW model, however, produced total evaporation estimates that agreed very well with the .measured. with a slope of 0.96, r2 of 0.91 and RMSE of 0.45 mm for a LAI ranging from 0 (no leaves) to 1.83 m2 m-2. The SW model also estimated soil evaporation and plant transpiration separately, and about 66 % of the cumulative evaporation was attributed to soil evaporation. These findings suggest that the PM equation should be replaced by the SW model for surfaces that assume a range of LAI values during the growing season. The H was estimated using (i) SW model that was further developed to include surface radiometric temperature measurements; (ii) one-layer model, but linked with a two-layer model for estimation of excess resistance, that uses surface radiometric temperature; and (iii) the SW model (unmodified). The agreement between modelled and measured H, using 10-min data, was in general reasonably good with RMSE (W m-2) of 45.11, 43.77 and 39.86 for the three models respectively. The comparative results that were achieved from (iii) were not translated into the daily data as all models appeared to have a tendency to underestimate H. The resulting RMSEs for the daily H data for the three models were (MJ m-2) 1.16, 1.17 and 1.18 respectively. It appears that similar or better agreement between measured and estimated H can be forged without the need for surface radiometric temperature measurements. The study showed, in general, that high frequency air temperature measurements can be used to estimate H with reasonable accuracy using the simple and relatively low-cost TV and SR methods. Moreover, these methods can be used to calculate ƒÜE, hence ET, as a residual of the shortened surface energy balance equation along with measurements of Rn and G assuming that energy balance closure is met. The simple and low-cost nature of these methods makes replication of measurements easier and their robust nature allows long-term measurements of energy fluxes. The study also showed that H and ƒÜE can be modeled using energy and resistance combination equations with reasonable accuracy. It also reiterated that the SW-type models, which treat the plant canopy and soil components separately, are more appropriate for estimation of H and ƒÜE over sparse vegetation as opposed to the PM-type models. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
83 |
Sensible heat flux under unstable conditions for sugarcane using temperature variance and surface renewal.Nile, Eltayeb Sulieman. January 2010 (has links)
Increased pressure on the available limited water resources for agricultural production has a significant impact on sugarcane production. Routine monitoring of evaporation with reliable accuracy is essential for irrigation scheduling, for more efficient use of the available water resources and for management purposes. An indirect method for estimating evaporation involves measuring the sensible heat flux (H) from which latent energy flux and hence total evaporation can be calculated, as a residual using the shortened energy balance from measurements of net irradiance and soil heat flux. Various methods for measuring H may include Bowen ratio energy balance, eddy covariance (EC), flux variance (FV), optical scintillation, surface renewal (SR) and temperature variance (TV). Each method has its own advantages and disadvantages, in terms of method theoretical assumptions, accuracy, complexity, cost, fetch requirements and power consumption. The TV and SR methods are inexpensive and reasonably simple with a reduced power requirement compared to other methods since they require high frequency air temperature data which is obtained by using an unshielded naturally-ventilated type-E fine-wire thermocouple at a single point above the canopy surface. The TV method is based on the Monin-Obukhov similarity theory (MOST) and uses the mean and standard deviation of the air temperature for each averaging period. Currently, there are two TV methods used for estimating sensible heat flux (HTV) at sub-hourly time intervals, one includes adjustment for stability, and a second that includes adjustment for air temperature skewness. Another method used to estimate sensible heat flux from the mean and standard deviation of air temperature is based on MOST and uses spatial second-order air temperature structure function. For the TV method adjusted for stability and the method based on MOST that uses a spatial second-order air temperature structure function, the Monin-Obukhov atmospheric stability parameter () is needed. The parameter can be estimated from EC measurements or alternatively estimated independently using an iteration process using horizontal wind speed measurements. The TV method including adjustment for air temperature skewness requires the mean and standard deviation of the air temperature and air temperature skewness for each averaging time period as the only input. The SR method is based on the coherent structure concept. Currently, there are various SR models method for estimating sensible heat flux. These include an ideal SR analysis model method based on an air temperature structure function analysis, the SR analysis model with a finite micro-front period, combined SR with K-theory and combined SR model method based on MOST. The ideal SR analysis model based on an air temperature structure function analysis should be calibrated to determine the SR weighting factor (). The other SR approaches require additional measurements such as crop height and horizontal wind speed measurements. In all of the SR approaches, air temperature time lags are used when calculating the air temperature structure functions. In this study, the performance of TV and SR methods were evaluated for estimation of sensible heat and latent energy fluxes at different heights for air temperature time lags of 0.4 and 0.8 s for daytime unstable conditions against EC above a sugarcane canopy at the Baynesfield Estate in KwaZulu-Natal, South Africa. For all methods, latent energy flux (LE) and hence evaporation was estimated as a residual from the shortened energy balance equation using H estimates and net irradiance and soil heat flux density measurements. The ideal SR analysis model method based on an air temperature structure function analysis approach was calibrated and validated against the EC method above the sugarcane canopy using non-overlapping data sets for daytime unstable conditions during 2008. During the calibration period, the SR weighting factor was determined for each height and air temperature time lag. The magnitude of ranged from 0.66 to 0.55 for all measurement heights and an air temperature time lag of 0.8 s. The value increased with a decrease in measurement height and an increase in air temperature time lag. For the validation data set, the SR sensible heat flux (HSR) estimates corresponded well with EC sensible heat flux (HEC) for all heights and both air temperature time lags. The agreement between HSR and HEC improved with a decrease in measurement height for the air temperature time lag of 0.8 s. The best HSR vs HEC comparisons were obtained at a height of 0.20 m above the crop canopy using = 0.66 for an air temperature time lag of 0.8 s. The residual estimates of latent energy flux by SR and EC methods were in good agreement. The LESR at a height of 0.20 m above the canopy yielded the best comparisons with LEEC estimated as a residual. The performance of the TV method, including adjustment for stability, and / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
84 |
The influence of soil organic matter on changes in leaf water potential of barley (Hordeum vulgare L.) during repeated cycles of moisture stress /Materechera, Simeon Albert. January 1985 (has links)
No description available.
|
85 |
Photosynthetic recovery and patterns of carbon flux in subarctic lichens from contrasting wetting and drying regimesGroulx, Michel. January 1984 (has links)
No description available.
|
86 |
Water stress and remobilization of dry matter and nitrogen in wheat and barley genotypes / by Zeinolabedin Tahmasebi Sarvestani.Sarvestani, Zeinolabedin Tahmasebi January 1995 (has links)
Bibliography: leaves 223-247. / xiii, 247 p. : ill, maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Effects of water availability during grain filling is examined in wheat (Triticum aestivum L.) and barley (Hordum vulgare L.) genotypes. The study tests the accumulation of dry matter (DM) and nitrogen (N) in the grain and also their remobilization from the shoot to the grain. Water stress during grain filling was found to reduce DM and N accumulation and also to increase N concentration in both wheat and barley grain. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1996
|
87 |
Adaptations of aquatic macrophytes to seasonally fluctuating water levels / by Marcus Paul Cooling.Cooling, Marcus Paul January 1996 (has links)
Bibliography: leaves 105-121. / viii, 133, [28] leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This thesis tests the hypothesis that plant strategies to respond to seasonal flooding can be used to predict their tolerance to variation in water regime. The studies illustrate contrasting strategies for survival in seasonally fluctuation water levels. These are tested in the field against similar species. Plants are surveyed at four stages of flooding at Bool Lagoon. The morphologically plastic species, V. reniformis and Triglochin procerum, respond to flooding with taller shoots and increased investment in photosynthetic tissue. It is concluded that the reproductive effort is much lower in the field than in the pond experiments, and changes in the population density of both species are not related to water regime. / Thesis (Ph.D.)--University of Adelaide, Dept. of Botany, 1997?
|
88 |
Response of grapevines to partial drying of the root system / Peter Ronald Dry.Dry, P. R. January 1997 (has links)
Bibliography: p. 261-273. / vi, 273 p. : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The general hypothesis tested in this study was that: 'partial drying of the root system of grapevines will result in reduced vegetative growth with beneficial effects for fruit yield, fruit composition and water-use efficiency'. Previously published work has suggested that partial drying of the root system may give rise to non-dydraulic root-derived signals capable of changing leaf development and transpiration. / Thesis (Ph.D.)--University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 1998
|
89 |
Adaptations of aquatic macrophytes to seasonally fluctuating water levels / by Marcus Paul Cooling.Cooling, Marcus Paul January 1996 (has links)
Bibliography: leaves 105-121. / viii, 133, [28] leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This thesis tests the hypothesis that plant strategies to respond to seasonal flooding can be used to predict their tolerance to variation in water regime. The studies illustrate contrasting strategies for survival in seasonally fluctuation water levels. These are tested in the field against similar species. Plants are surveyed at four stages of flooding at Bool Lagoon. The morphologically plastic species, V. reniformis and Triglochin procerum, respond to flooding with taller shoots and increased investment in photosynthetic tissue. It is concluded that the reproductive effort is much lower in the field than in the pond experiments, and changes in the population density of both species are not related to water regime. / Thesis (Ph.D.)--University of Adelaide, Dept. of Botany, 1997?
|
90 |
Effects of partial rootzone drying on grapevine physiology and fruit quality.Stoll, Manfred January 2000 (has links)
Growth, productivity and fruit quality of grapevines are closely linked to soil water availability. Withholding of water for any length of time results in slowed growth. If drought continues yield may be lost. Vines can be manipulated to stimulate early defence mechanisms by decreasing soil water availability. By using an irrigation technique, which allows for separate zones with different soil moisture status, it is possible to stimulate response mechanisms of the root system which are normally related to water stress. The difficulty of separating 'wet' and 'dry' zones was initially overcome by using split-root plants with root systems divided between two containers. Such experiments on split-root model plants resulted in the development of an irrigation technique termed partial rootzone drying (PRD). Results from irrigation experiments using PRD have shown that changes in stomatal conductance and shoot growth are some of the major components affected (Dry et al., 1996). The idea of using irrigation as a tool to manipulate stress responses in this way had its origin in the concept that root- derived abscisic acid (ABA) was important in determining stomatal conductance (Loveys, 1984). Later experiments on split-root plants have demonstrated that many effects of water stress can be explained in terms of transport of chemical signals from roots to shoots without changes in plant water status (Gowing et al., 1990). The necessary chemical signals are provided by the dry roots, and the wet roots prevent the development of deleterious water deficits. The general hypothesis tested during this study was that partial drying of the root system gives rise to a change in the supply of root-derived chemical signals which determine changes in grapevine physiology, thereby affecting fruit quality. Experiments were conducted on split-root vines (Vitis vinifera L. cvs. Cabernet Sauvignon and Chardonnay) grown in pots of different sizes, on field-grown vines which had either their root system divided by a plastic membrane (Vitis vinifera L. cv. Cabernet Sauvignon on own roots or grafted on Ramsey rootstocks) or conventional vines with a non-divided root system (Vitis vinifera L. cv. Cabernet Sauvignon, Shiraz and Riesling) with a commercial PRD irrigation design. The irrigation treatments were vines receiving water on both sides (control) and PRD-treated vines, which only received water on one side at any time. The frequency of alternation of 'wet' and 'dry' sides was determined according to soil moisture and other influences such as rainfall and temperature. In most of the experiments the irrigation was alternated from one side to the other every 10 to 15 days. Chemical signals from roots: the role of ABA and cytokinins Studies on chemical signals have concentrated on ABA and cytokinins (CK). An improved stable isotope dilution protocol, which enables analysis of ABA and CK from the same tissue sample, was developed. Analysis of cytokinins focused on zeatin (Z), zeatin riboside (ZR), zeatin glucoside (ZG) and iso pentenyl adenine (iP). Roots are relatively inaccessible, particularly in field situations. To enable easier access to roots of field-grown vines, split-root vines were planted in a trench which was refilled with a sandy soil. This created a homogenous soil substrate and did not restrict root growth while still allowing access to roots under field conditions. Analyses of root samples of field-grown vines have shown that cytokinins and ABA may originate in roots and their concentrations can be substantially altered during an irrigation cycle. Alternating soil water conditions showed that [ABA] in roots on the 'dry' side was significantly higher compared with the 'wet' side. Due to a reduction in CK on the 'dry' side of PRD-treated vines, the ratio between ABA and CK was substantially changed during an irrigation cycle. The ABA levels in root tissue and in petiole xylem sap were negatively related to stomatal conductance. This further suggests that ABA, mostly synthesized on the 'dry' side of the root system, might be responsible for a decline in stomatal conductance. Furthermore, a higher pH of petiole xylem sap was observed in PRD-treated vines which may also contribute to the regulation of stomatal conductance. Studies on stomatal patchiness showed that non-uniform stomatal aperture occurred in field-grown vines under natural environmental conditions and was more abundant under PRD conditions. The degree of stomatal opening, determined by using a water infiltration technique, correlated with measurement of stomatal conductance. Exogenous application of a synthetic cytokinin (benzyl adenine) can override the possible ABA-mediated stomatal closure resulting from PRD treatment, providing further evidence for the in vivo role of these growth regulators in the control of stomatal conductance. The effect of benzyl adenine was transient, however, requiring repeated applications to sustain the reversal. In addition, CKs may also be important in influencing grapevine growth. Following several weeks of repeated spray applications with benzyl adenine, it was found that the development of lateral shoots in PRD-treated vines was enhanced compared to PRD-treated vines sprayed with water only. This supports the idea that the reduction in lateral shoot development seen in PRD-treated vines is due to a reduced production of CKs (Dry et al., 2000a). By measuring shoot growth rate it was found that one common feature of PRD-treated vines, which were not sprayed with CK, was a reduction of lateral shoot growth. It can therefore be speculated that the reduction in lateral growth is related to a reduced delivery of cytokinins from the roots. Zeatin and zeatin riboside concentration in shoot tips and prompt buds/young lateral shoots were reduced by the PRD treatment providing further evidence in support of this hypothesis. Water movement from 'wet' to 'dry' roots Roots, being a primary sensor of soil drying, play an important role in long- and short-term responses to PRD. Using stable isotopes of water and heat-pulse sap flow sensors water movement was traced from wet to dry roots in response to PRD. The redistribution of water from roots grown in a soil of high water potential to roots growing in a soil of low water potential may be of significance with regard to the movement of chemical signals and the control of water balance of roots. Measurements of the relative water content (RWC) have shown a slower decline of RWC of the 'dry' roots of PRD vines relative to roots of vines which received no water, despite similar water content in soil surrounding those roots. The redistribution of water may help to sustain the response to PRD for longer periods possibly releasing chemical signals and to support the activity of fine roots in drying soil. Field vines, irrigated with PRD over several growing seasons, altered their root distribution relative to the control vines. PRD caused a greater concentration of fine roots to grow in deeper soil layers and this may contribute to a better water stress avoidance. The effect on root growth may be augmented by the water movement and by the large difference in ABA to cytokinin ratio, which are also known to alter root growth. PRD makes more efficient use of available water In experiments where both control and PRD-treated vines received the same amount of water many differences between the vines were demonstrated. Under conditions where water supply was adequate for both treatments, the stomatal conductance and growth of the PRD-treated vines was restricted as has been observed in many previous experiments. As total water input was reduced, however, the stomatal conductance of PRD-treated vines became greater than control vines, suggesting that the latter were experiencing a degree of water stress, whereas the PRD-treated vines were not. This may have been due to the greater depth of water penetration in the case of the PRD-treated vines, where water was applied to a smaller soil surface area. This distinction between PRD-treated and control vines, at very low water application rates, was also reflected in pruning weights and crop yields which were actually greater in PRD-treated vines. It was concluded that at low water application rates, the PRD-treated vines were more tolerant of water stress and made more efficient use of available water. Reduction in vigor opens the canopy. The initial aim of the research which led to the development of PRD was to achieve better control of undesirable, excessive shoot and foliage growth which, from a viticultural point of view, has many disadvantages. Grapevine shoot growth rate responds very sensitively to drying soil conditions. The irrigation strategy used in the PRD experiments maintained a reduction of both main shoot and lateral shoot growth. In response to PRD a decrease in shoot growth rate and leaf area was observed. Much of the reduction in canopy biomass was due to a reduced leaf area associated with lateral shoots, thus influencing the canopy structure. This was one major factor improving the light penetration inside the canopy. Control of vegetative vigour results in a better exposure of the bunch zone to light and, as a consequence, in improved grape quality. It is likely that changes in canopy density, as a result of PRD, is causing changes in fruit quality components. Anthocyanin pigments such as derivatives of delphinidin, cyanidin, petunidin and peonidin were more abundant in berries from PRD vines; by comparison the concentration of the major anthocyanin, malvidin, was reduced. When leaves were deliberately removed from more vigorous control vines, which improved bunch exposure, the differences in fruit composition were much reduced. This further supports the idea that a more open canopy, in response to PRD, improves fruit quality by affecting the canopy structure. Fruit quality consequently determines the quality, style and value of the finished wine. Wines from this study have been produced and data on wine quality from commercial wineries are also available. Sensory evaluations have demonstrated that high wine quality from PRD-treated vineyards can be achieved without any yield-depressing effects. This study has provided evidence to support the original hypothesis. The major findings were: a) Chemical signals, altered under PRD and mostly originating from roots, play an important role in the root to shoot communication in grapevines. b) The movement of water from 'wet' to 'dry' soil layers may help to sustain chemical signals as a response of grapevines to PRD and to support the activity of fine roots in drying soil. c) A reduction in vegetative growth, in particular of lateral shoots, was sustained using PRD and affected the canopy structure which in turn, due to a better light penetration into the canopy, improved the fruit quality. d) The reduction in irrigation water applied did not have a detrimental effect on grape yield and thus the efficiency of water use was improved. e) Application of relatively low irrigation rates showed that PRD-treated vines were more tolerant of water stress and made more efficient use of available water. / Thesis (Ph.D.)--Department of Horticulture, Viticulture and Oenology, 2000.
|
Page generated in 0.135 seconds