Spelling suggestions: "subject:"plantmicrobes interaction"" "subject:"antimicrobes interaction""
1 |
Functional analysis of genomically linked NLR proteins in plant innate immunityLüdke, Daniel 30 June 2021 (has links)
No description available.
|
2 |
Effects of the Brown Seaweed, Ascophyllum nodosum, on the Nodulation and Growth of AlfalfaZhai, Ruijie 02 November 2012 (has links)
The effect of Ascophyllum nodosum extracts on the nodulation and growth of alfalfa was investigated. Plant growth assay revealed that alfalfa treated with 2 g L-1 ANE exhibited a significant increase in leaf area. Under salt stress, alfalfa treated with 0.5 g L-1 ANE exhibited a significant increase in total length compared to controls. A root hair deformation assay indicated that ANE 0.5 g L-1 stimulated the synthesis of Nod factors secreted by rhizobia thus accelerate root hair deformation of alfalfa. Similarly, ANE 0.5 g L-1 caused an increase in nodC gene expression suggesting that ANE may act similarly to flavonoids in the rhizobium-legume symbiosis. Under field conditions, ANE increased the total number of functional nodules, total root length and total leaf area. Taken together, the results suggest that ANE may contain compound(s) that promote specific metabolic pathway both in alfalfa and bacterium thus enhance the symbiotic relationship.
|
3 |
Transgenic Plant and Fungal Expression to Assay in vitro and in planta Activity of Sus scrofa beta-Defensin 1 and Nicotiana tabacum Defensin 1Atnaseo, Chuthamat 14 December 2011 (has links)
To explore the use of defensins for transgenic plant disease resistance, expression by agroinfiltration of plants, stable transformation of plants and stable transformation of yeast were tested for porcine β-defensin 1 (pbd-1) and Nicotiana tabacum defensin 1 (Ntdef1). Attempts to screen constructs by agroinfiltration of Nicotiana benthamiana leaves revealed that agroinfiltration alone induced localized resistance against Colletotrichum destructivum. A comparison of Agrobacterium tumefaciens strains showed that the induced resistance required the transfer of type IV effectors into plant cells and was independent of salicylic acid or ethylene signaling. Stable expression of pbd-1 in N. tabacum and Pichia pastoris showed that PBD-1 purified from P. pastoris had varying degrees of antimicrobial activity against a broad range of microbes, including P. syringae pv. tabaci, C. destructivum and C. orbiculare, but in transgenic N. tabacum, the protein could not be detected and resistance increased only slightly to P. syringae pv. tabaci but not to C. destructivum or C. orbiculare. Stable expression of Ntdef1 in P. pastoris yielded a protein with no or little antimicrobial activity, and stable expression in N. tabacum did not result in detectable Ntdef1 or increased resistance to those pathogens. Although PBD-1 had strong antimicrobial activity against plant pathogens, plant disease resistance likely did not increase because of the low level of the protein in the plants, whereas resistance did not increase with Ntdef1 likely because of low antimicrobial activity and low levels of the protein in the plant. This research demonstrates that agroinfiltration is not appropriate for testing genes for antimicrobial activity in planta, while the P. pastoris expression system is useful for producing protein for in vitro tests of a gene prior to its transfer to plants.
|
4 |
Studies on symbiosis-spesific phenotype of Mesorhizobium loti and its function to host plant / ミヤコグサ根粒菌の共生特異的な表現型と宿主への影響に関する研究Tatsukami, Yohei 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20438号 / 農博第2223号 / 新制||農||1049(附属図書館) / 学位論文||H29||N5059(農学部図書室) / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 植田 充美, 教授 矢﨑 一史, 教授 森 直樹 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
5 |
Molecular and Functional Characterization of Medicago Truncatula Npf17 GeneSalehin, Mohammad 12 1900 (has links)
Legumes are unique among plants for their ability to fix atmospheric nitrogen with the help of soil bacteria rhizobia. Medicago truncatula is used as a model legume to study different aspects of symbiotic nitrogen fixation. M. truncatula, in association with its symbiotic partner Sinorhizobium meliloti, fix atmospheric nitrogen into ammonia, which the plant uses for amino acid biosynthesis and the bacteria get reduced photosynthate in return. M. truncatula NPF1.7 previously called MtNIP/LATD is required for symbiotic nitrogen fixing root nodule development and for normal root architecture. Mutations in MtNPF1.7 have defects in these processes. MtNPF1.7 encodes a member of the NPF family of transporters. Experimental results showing that MtNPF1.7 functioning as a high-affinity nitrate transporter are its expression restoring chlorate susceptibility to the Arabidopsis chl1-5 mutant and high nitrate transport in Xenopus laevis oocyte system. However, the weakest Mtnip-3 mutant allele also displays high-affinity nitrate transport in X. laevis oocytes and chlorate susceptibility to the Atchl1-5 mutant, suggesting that MtNPF1.7 might have another biochemical function. Experimental evidence shows that MtNPF1.7 also functions in hormone signaling. Constitutive expression of MtNPF1.7 in several species including M. truncatula results in plants with a robust growth phenotype. Using a synthetic auxin reporter, the presence of higher auxin in both the Mtnip-1 mutant and in M. truncatula plants constitutively expressing MtNPF1.7 was observed. Previous experiments showed MtNPF1.7 expression is hormone regulated and the MtNPF1.7 promoter is active in root and nodule meristems and in the vasculature. Two potential binding sites for an auxin response factors (ARFs) were found in the MtNPF1.7 promoter. Chromatin immunoprecipitation-qRT-PCR confirmed MtARF1 binding these sites. Mutating the MtARF1 binding sites increases MtNPF1.7 expression, suggesting a mechanism for auxin repression of MtNPF1.7. Consistent with these results, constitutive expression of an ARF in wild-type plants partially phenocopies Mtnip-1 mutants’ phenotypes.
|
6 |
Identification of genes and proteins involved in the regulation of orchid mycorrhiza / Identificação de genes e proteínas envolvidos na regulação de micorrizas de orquídeasRafael Borges da Silva Valadares 14 February 2014 (has links)
Orchids are characterized by producing minute endosperm-lacking seeds, which depend on mycorrhizal fungi for germination and embryo development. Some aclorophyllous orchids remain dependent on the mycorrhizal association for carbon acquisition during their whole life history, whereasother orchids develop photosynthesis. Despite the biological significance of orchid mycorrhiza, gene expression studies are lacking. We have used different highthroughput approaches in order to understanding the mechanisms regulating orchid mycorrhiza development and functioning. Firstly, we have used a 2D-LC-MS/MS approach coupled to isobaric tagging for relative and absolute quantification (iTRAQ) to identify proteins with differential accumulation in Oncidium sphacelatum at different stages of mycorrhizal protocorm development (achlorophyllous and green protocorms) after seed inoculation with a Ceratobasidium sp. isolate. Quantitative analysis showed that the expected changes in carbon metabolism in green protocorms were accompanied by enhanced accumulation of proteins involved in the modulation of reactive oxygen species homeostasis, defense related responses, phytoalexins and carotenoid biosynthesis, suggesting that orchid protocorms undergo profound metabolic changes during the switch from the fully mycoheterotrophic to the photosynthethic stage. Secondly, three different proteomic techniques were carried out in independent experiments aiming to identify changes in protein accumulation in mycorrhizal roots of the terrestrial orchid Oeceoclades maculata.Finally, O. maculatamycorrhizal roots were used for transcriptome analyses. The data revealed a strong increase in general stress responses, accompanied by changes in signaling pathways possibly related to fungal recognition and establishment of a compatible interaction. Some of the upregulated genes may be involved in the reorganization of cell structure, likely related to accommodation of the fungal symbiont in the plant roots. We have also observed in mycorrhizal roots up-regulation of genes involved in carbon metabolism, including glycolysis/gluconeogenesis and amino sugars metabolism, as well as genes involved innitrogen assimilation. The down-regulation of genes involved in the jasmonate and ABA transduction pathways, and key genes encoding anti-fungal proteins, such as chitinase and a mannose-specific binding lectin, strongly suggests an alleviation of plant defense responses in O. maculata mycorrhizal roots. In general, our data suggest that the physiology of an orchid mycorrhiza is more similar to a compatible interaction than to an arm-race between plant and fungi. Overall orchid mycorrhiza have proved to be a promising model for investigating plantfungal interactions and further studies should now address the specific roles of the genes showing differential regulation in this study. / As orquídeas são caracterizadas por produzirem sementes diminutas, que não possuem endosperma. Necessitam, portanto, da interação com fungos micorrízicos para germinação e desenvolvimento do embrião. Algumas orquídeas aclorofiladas se mantêm dependentes dos fungos micorrízicos para a aquisição de carbono, enquanto outras desenvolvem a maquinaria fotossintética. Apesar do significado biológico das micorrizas de orquídeas, alterações na expressão gênica e no acúmulo de proteínas foram altamente negligenciads nos últimos anos. Neste trabalho, foram utilizadas diferentes técnicas sequenciamento e identificação de genes e proteínas em larga-escala para acessar as alterações moleculares responsáveis pela regulação das micorrizas de orquídeas. Uma abordagem baseada em 2D-LC MS/MS acoplada a técnica de quantificação absoluta e relativa iTRAQ, foiutilizada para identificar proteínas com acúmulo diferencial em Oncidium sphacelatum em diferentes estágios do desenvolvimento do protocormo (protocormos aclorofilados versus protocormos fotossintetizantes), após inoculação com um fungo do gênero Ceratobasidium. As análises mostraram que, as alterações esperadas no metabolismo do carbono foram acompanhadas de um acúmulo aumentado de proteínas envolvidas na modulação de espécies reativas de oxigênio, respostas de defesa, biossíntese de fitoalexinas e carotenóides, sugerindo que os protocormos de orquídeas passam por profundas alterações metabolicas durante a transição do metabolismo micoheterotrófico para o fotossintético. Posteriormente foram utilizadas três diferentes técnicas de proteômica quantitativa para explorar alterações fisiológicas em raízes micorrizadas e não-micorrizadas de Oeceoclades maculata.Este estudo foi ampliado, pela utilização de uma abordagem transcritômica ao mesmo modelo biológico. Em conjunto, os dados revelaram um forte aumento em respostas relacionadas ao estresse, acompanhadas de alterações em vias de transdução de sinal possivelmente relacionadas ao reconhecimento do simbionte fúngico e estabelecimento de uma interação compatível. Alguns genes com expressão aumentada devem estar envolvidos na reorganização celular, provavelmente ligada a acomodação do simbionte fúngico nas raízes das plantas. Também foi observado o aumento de genes envolvidos no metabolismo do carbono e de açúcares aminados, juntamente a genes relacionados a assimilação de nitrogênio em raízes micorrizadas. A expressão diminuída de genes envolvidas nas vias do jasmonato e ácido abscícico, juntamente a genes-chave que codificam para proteínas anti-fúngicas sugerem fortemente uma atenuação das respostas de defesa da planta em raízes micorrizadas de Oeceoclades maculata. No geral, parece que as micorrizas de orquídeas são fisiológicamente mais próximas de uma simbiose compatível do que de uma interação unilateral em favor da planta. Sobretudo, este sistema biológico provou ser promissor para investigação de interações planta-fungo e, próximas pesquisas devem agora ser focadas em funções específicas dos genes que mostraram regulação diferencial neste estudo.
|
7 |
Identification of genes and proteins involved in the regulation of orchid mycorrhiza / Identificação de genes e proteínas envolvidos na regulação de micorrizas de orquídeasValadares, Rafael Borges da Silva 14 February 2014 (has links)
Orchids are characterized by producing minute endosperm-lacking seeds, which depend on mycorrhizal fungi for germination and embryo development. Some aclorophyllous orchids remain dependent on the mycorrhizal association for carbon acquisition during their whole life history, whereasother orchids develop photosynthesis. Despite the biological significance of orchid mycorrhiza, gene expression studies are lacking. We have used different highthroughput approaches in order to understanding the mechanisms regulating orchid mycorrhiza development and functioning. Firstly, we have used a 2D-LC-MS/MS approach coupled to isobaric tagging for relative and absolute quantification (iTRAQ) to identify proteins with differential accumulation in Oncidium sphacelatum at different stages of mycorrhizal protocorm development (achlorophyllous and green protocorms) after seed inoculation with a Ceratobasidium sp. isolate. Quantitative analysis showed that the expected changes in carbon metabolism in green protocorms were accompanied by enhanced accumulation of proteins involved in the modulation of reactive oxygen species homeostasis, defense related responses, phytoalexins and carotenoid biosynthesis, suggesting that orchid protocorms undergo profound metabolic changes during the switch from the fully mycoheterotrophic to the photosynthethic stage. Secondly, three different proteomic techniques were carried out in independent experiments aiming to identify changes in protein accumulation in mycorrhizal roots of the terrestrial orchid Oeceoclades maculata.Finally, O. maculatamycorrhizal roots were used for transcriptome analyses. The data revealed a strong increase in general stress responses, accompanied by changes in signaling pathways possibly related to fungal recognition and establishment of a compatible interaction. Some of the upregulated genes may be involved in the reorganization of cell structure, likely related to accommodation of the fungal symbiont in the plant roots. We have also observed in mycorrhizal roots up-regulation of genes involved in carbon metabolism, including glycolysis/gluconeogenesis and amino sugars metabolism, as well as genes involved innitrogen assimilation. The down-regulation of genes involved in the jasmonate and ABA transduction pathways, and key genes encoding anti-fungal proteins, such as chitinase and a mannose-specific binding lectin, strongly suggests an alleviation of plant defense responses in O. maculata mycorrhizal roots. In general, our data suggest that the physiology of an orchid mycorrhiza is more similar to a compatible interaction than to an arm-race between plant and fungi. Overall orchid mycorrhiza have proved to be a promising model for investigating plantfungal interactions and further studies should now address the specific roles of the genes showing differential regulation in this study. / As orquídeas são caracterizadas por produzirem sementes diminutas, que não possuem endosperma. Necessitam, portanto, da interação com fungos micorrízicos para germinação e desenvolvimento do embrião. Algumas orquídeas aclorofiladas se mantêm dependentes dos fungos micorrízicos para a aquisição de carbono, enquanto outras desenvolvem a maquinaria fotossintética. Apesar do significado biológico das micorrizas de orquídeas, alterações na expressão gênica e no acúmulo de proteínas foram altamente negligenciads nos últimos anos. Neste trabalho, foram utilizadas diferentes técnicas sequenciamento e identificação de genes e proteínas em larga-escala para acessar as alterações moleculares responsáveis pela regulação das micorrizas de orquídeas. Uma abordagem baseada em 2D-LC MS/MS acoplada a técnica de quantificação absoluta e relativa iTRAQ, foiutilizada para identificar proteínas com acúmulo diferencial em Oncidium sphacelatum em diferentes estágios do desenvolvimento do protocormo (protocormos aclorofilados versus protocormos fotossintetizantes), após inoculação com um fungo do gênero Ceratobasidium. As análises mostraram que, as alterações esperadas no metabolismo do carbono foram acompanhadas de um acúmulo aumentado de proteínas envolvidas na modulação de espécies reativas de oxigênio, respostas de defesa, biossíntese de fitoalexinas e carotenóides, sugerindo que os protocormos de orquídeas passam por profundas alterações metabolicas durante a transição do metabolismo micoheterotrófico para o fotossintético. Posteriormente foram utilizadas três diferentes técnicas de proteômica quantitativa para explorar alterações fisiológicas em raízes micorrizadas e não-micorrizadas de Oeceoclades maculata.Este estudo foi ampliado, pela utilização de uma abordagem transcritômica ao mesmo modelo biológico. Em conjunto, os dados revelaram um forte aumento em respostas relacionadas ao estresse, acompanhadas de alterações em vias de transdução de sinal possivelmente relacionadas ao reconhecimento do simbionte fúngico e estabelecimento de uma interação compatível. Alguns genes com expressão aumentada devem estar envolvidos na reorganização celular, provavelmente ligada a acomodação do simbionte fúngico nas raízes das plantas. Também foi observado o aumento de genes envolvidos no metabolismo do carbono e de açúcares aminados, juntamente a genes relacionados a assimilação de nitrogênio em raízes micorrizadas. A expressão diminuída de genes envolvidas nas vias do jasmonato e ácido abscícico, juntamente a genes-chave que codificam para proteínas anti-fúngicas sugerem fortemente uma atenuação das respostas de defesa da planta em raízes micorrizadas de Oeceoclades maculata. No geral, parece que as micorrizas de orquídeas são fisiológicamente mais próximas de uma simbiose compatível do que de uma interação unilateral em favor da planta. Sobretudo, este sistema biológico provou ser promissor para investigação de interações planta-fungo e, próximas pesquisas devem agora ser focadas em funções específicas dos genes que mostraram regulação diferencial neste estudo.
|
8 |
Rhizosphere-driven Lipopeptide Production by Different Strains of Bacillus spp. as Mechanism Involved in Biological Control of Plant PathogensNihorimbere, Venant 04 February 2011 (has links)
Some plant-beneficial bacteria with biopesticide potential produce antimicrobial compounds that are tightly involved in multitrophic interactions occurring in the phytosphere among which antagonism toward a diverse range of phytopathogens. However, there is a crucial need for an accurate assessment of antibiotic production rate in this environment colonized by these bacteria. In this context, we conducted the present thesis work with the scope to better understand how two different Bacillus genus strains produce lipopeptides in the rhizosphere of plants. In the first part, one of the strains (B. amyloliquefaciens S499) was selected out of other isolates for its technological traits and in vitro inhibition growth activity of plant pathogenic fungi. We further demonstrated its biocontrol potential in tomato open-field experiments where plantings have been devastated by a local fungus preliminary identified as Fusarium semitectum. In a second part, we combined two mass spectrometry-based approaches (electrospray ionization and imaging) to analyze the pattern of surfactin, iturin and fengycin lipopeptide families produced in planta by strain S499. Our results show that rhizosphere conditions are conducive for surfactin synthesis but not for other types of lipopeptides and that the lipopeptide pattern can be markedly influenced by nutritional factors, biofilm formation and oxygen availability. In a last part, surfactin gene expression (srfA) level was evaluated in situ on tomato root using the reporter gene (LacZ) inserted in B. subtilis strain BGS3. Results showed effective expression of srfA and production of surfactin in biologically important level quantities upon establishment of bacterial population on roots. Our results also demonstrate that BGS3 developing in colonies, efficiently utilizes the main substrates from plant exudates to produce surfactins. The production may also be favored in bacteria growing slowly in the rhizosphere. Globally, this work contributes to better appreciate the impact of some environmental factors on the in situ biosynthesis of lipopeptides by strains of Bacillus which is probably an essential step for improving the level and reliability of their efficacy as biological agents for the control of plant diseases.
|
9 |
MICROBIAL ECOLOGY OF ENDOPHYTIC BACTERIA IN ZEA SPECIES AS INFLUENCED BY PLANT GENOTYPE, SEED ORIGIN, AND SOIL ENVIRONMENTJohnston Monje, David Morris 26 May 2011 (has links)
Endophytes are organisms that live inside plants without causing disease and include microbes that benefit their hosts by aiding in nutrient acquisition and pathogen control. This thesis concerns the endophytes of the genus Zea which includes modern maize (Zea mays L.). Beginning 9,000 years ago, maize was domesticated from wild grasses in Mexico (teosintes), bred into diverse varieties and moved to new soils throughout the Americas. The impact of these long-term changes on the associated endophytic communities has not been examined. Furthermore, today, maize is routinely transplanted around the world to facilitate breeding, but the short-term impact of switching soils on endophyte composition is not known. I attempted to answer the first question by surveying the bacterial endophytes that inhabit 14 diverse ancestral, ancient and modern Zea genotypes. To answer the second question, three extreme Zea genotypes, ancestral, intermediate and modern, were grown side by side on two extreme soils that span the tropical-to-temperate migration route of maize. Endophyte populations from seeds, roots and shoots were DNA fingerprinted using terminal restriction length polymorphism (TRFLP) of 16S rDNA. To understand microbial functions, bacteria were cultured and tested for >13 in vitro traits including nitrogen fixation, phosphate solubilization, plant hormone production and antibiosis. Relationships between endophyte communities were analyzed using principle component analysis (PCA) and Sᴓrensen’s similarity index. The results show that different Zea tissues and genotypes have diverse endophytic communities. The community composition of seed endophytes correlates with host phylogeny suggesting that as humans bred maize, they inadvertently impacted its microbial inhabitants, though the change was gradual. Soil swapping and growth on sterile sand confirm that shoot and root endophyte communities in juvenile plants are primarily inherited. However, a given maize genotype can also select and take up the same microbes (based on TRFLP) from geographically diverse soils. These latter results show that the endophyte communities of Zea plants are significantly buffered from the short-term effects of migration. A few microbes and microbial traits are conserved across all Zea genotypes and soil treatments, suggestive of a core taxonomic and functional microbiota for this agriculturally important genus. / OMAFRA New Directions, Ontario Research Fund, Canadian Foundation for Innovation
|
10 |
Potential of Beneficial Trichoderma Isolates in Alleviating Water Deficit Stress in TomatoRawal, Ranjana January 2021 (has links)
No description available.
|
Page generated in 0.1393 seconds