1 |
Effect of Date of Planting on Yield of CottonJackson, E. B., Tilt, P. A. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
2 |
Pima Cotton Hill-Drop Planting TestKittock, D. L. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
3 |
Minimum Tillage Experiments at Three Locations 1969Cannon, M. D. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
4 |
Effect of Narrow-Row Spacing on Cotton Fiber Properties and Boll CharacteristicsBriggs, Robert E., Patterson, Lloyd L. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
5 |
Pima Cotton Skip-Row TestKittock, D. L. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
6 |
Minimum Tillage Experiments at Two Locations, 1970Cannon, M. D. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
7 |
Row Spacing TrialFarr, C. R. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
8 |
Plant Population TrialFarr, C. R. 02 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
9 |
Soil Management for Improved Rice Production in Casamance, SenegalFall, Thioro 06 July 2016 (has links)
Rice is a staple crop for many countries around the world, and is one of the top three food sources globally. Many environments where rice is grown contain stressors likely to limit its growth and yield. In southern Senegal (Casamance region), rice is mainly cultivated in lowlands near estuaries where drought, salinity, acidity, poor soil fertility, and iron toxicity are the main limiting factors. In Casamance, average rice yield for local farmers is 1 to 2 tons per hectare (809 to 1618 pounds per acre), compared to worldwide average yield of more than 4 tons per hectare. The soil where our 2-year experiment (2014 and 2015) was conducted is highly saline-sodic and acidic, and the salt tolerant cultivar we grew yielded 3.4 tons per hectare in 2013. Our main objective was to increase rice yield. The water table height, salinity, and pH were measured weekly during the rice growing season, and the soil was described, sampled, and analyzed to better understand the water and soil resources. Two planting methods were tested: flat planting and planting on beds. Two soil amendments were compared with each planting method: biochar and crushed oyster shells, alone and in combination. An untreated control was included in the experiment. All plots were fertilized. Treatment effects on soil properties and yield were compared in a split-plot design. Plant tissue was sampled for elemental content. The water table was above the surface and was saline during half of the growing season in 2014, and decreased after rice grain head emerged. Planting methods and amendments did not have an effect on yield in 2014, but biochar amendment increased yield in 2015. In 2014, soil salinity and sodium decreased to below toxic levels late in the growing season in the flat plots but not in the bedded plots. Therefore, flat planting is more appropriate in these lowland rice production systems. Soil pH increased from 4.4 to 7.7 in flat planting where biochar+shell was applied. Soil available nutrients such as P, Mn, and Zn were significantly higher in flat planting compared to beds. Toxic levels of Na (> 2000 milligrams per kilogram) were measured in leaves sampled just before flowering. We recommend flat planting and amending soil with biochar in saline-sodic acid-sulfate paddy soils in Casamance to improve rice yield. / Master of Science
|
Page generated in 0.0977 seconds