1 |
Epitopes mapping and vaccine development of Mycoplasma hyopneumoniae through phage display technologyYang, Wen-Jen 27 January 2003 (has links)
Mycoplasma hyopneumoniae is the etiologic agent causing chronic pneumonia of swine. The lung lesions of swine produce the slower growth rate and lower feed conversion ratio and finally cause economic loss. Although four genome projects of mycoplasma species had been completed, the genome-sequencing project of M. hyopneumoniae also closed to the finished stage. However, only a few genes and proteins of M. hyopneumoniae have been studied, the molecular pathogenic mechanism remains elusive. The research of molecular vaccine is still preliminary.
In order to obtain more information about epitope structures as the basis to develop molecular vaccine against this pathogen, two phage-displayed random heptapeptides libraries were used to identify epitopes recognized by purified IgG of rabbit anti-M. hyopneumoniae hyperimmune serum in this study. Individual phage clones were isolated and verified the binding specificity to the purified IgG by Western blot analysis and competitive ELISA after three rounds of biopanning. The selected clones were further characterized by DNA sequencing analysis and deduced to amino acid sequences. There are six consensus sequences contained tri- to hepta-peptide existing among the selected phage clones by aligning the sequences of foreign amino acids displaying on pIII protein. The consensus sequences may be serving as crucial epitopes of M. hyopneumoniae. By searching the protein database of M. hyopneumoniae deposited in NCBI, some surface proteins were matched by the selected mimotopes. Like P97, the essential protein for attaching to cilia of swine, the deduced epitopes mainly located at a.a. from 365 to 382, 395 to 403 and 436 to 452, the R1 and R2 repeated sequences also matched by the mimotopes.
To evaluate the potential of these mimotopes as effective vaccine, several phage clones were chosen to immunize mice by intraperitoneal and intranasal administration. There are specific antibody responses to these mimotopes existing in serum IgG, fecal extracts and bronchoalveolar lavage fluids IgA. The serum IgG subclass profiles analysis reveals that these are mainly existed in IgG1 subclass. Base on the results of IgG subclass profiles analysis in sera, the results suggest that the phage-derived vaccines mainly activate Th2 cellular immunity pathway with the strategy used in this study. The similar results were found in the inactivated vaccine. The Th2 activation will promote the elimination of extracellular microorganism. Western blotting analysis showed that each serum raised by the phage clones could recognize 2 to 5 mycoplasma proteins. With the results of growth inhibition assay, we found that the selected phage clones CS4 and 58 are better vaccine candidates and some proteins (97 kDa¡B56 kDa and 30 kDa) may play crucial roles in block the bacteria growth.
The advantage was taken of the natural property of M13 phage to infect E. coli, which is initiated by the N terminal of pIII coat protein binding with the F pili of E. coli. Plaque reduction tests were proposed to demonstrate the humoral immunity responses induced by phage-derived vaccine containing the antibodies specifically against the foreign peptide displayed on pIII coat protein.
The present results provide more epitope information of M. hyopneumoniae. The mice immunization results reveal that the phage-displayed mimotopes can be used as potential vaccine candidates. The strategy presented in this study can shorten the time course for vaccine development and provide an alternative pathway for searching vaccine candidates against M. hyopneumoniae.
|
Page generated in 0.1165 seconds