Spelling suggestions: "subject:"plasmônica."" "subject:"plasmáticas.""
1 |
Theranostic nanomaterials applied to the cancer diagnostic and therapy and nanotoxicity studies / Nanomateriais Teranósticos Aplicados à Problemática do Câncer e Estudos de Nanotoxicidade.Marangoni, Valeria Spolon 29 June 2016 (has links)
Multifunctional plasmonic nanoparticles have shown extraordinary potential for near infrared photothermal and triggered-therapeutic release treatments of solid tumors. However, the accumulation rate of the nanoparticles in the target tissue, which depends on their capacity to escape the immune system, and the ability to efficiently and accurately track these particles in vivo are still limited. To address these challenges, we have created two different systems. The first one is a multifunctional nanocarrier in which PEG-coated gold nanorods were grouped into natural cell membrane vesicles from lung cancer cell membranes (A549) and loaded with β-lap (CM-β-lap-PEG-AuNRs). Our goal was to develop specific multifunctional systems for cancer treatment by using the antigens and the unique properties of the cancer cell membrane combined with photothermal properties of AuNRs and anticancer activity of β-lap. The results confirmed the assembly of PEG-AuNRs inside the vesicles and the irradiation with NIR laser led to disruption of the vesicles and release of the PEG-AuNRs and β-Lap. In vitro studies revealed an enhanced and synergic cytotoxicity against A549 cancer cells, which can be attributed to the specific cytotoxicity of β-Lap combined with heat generated by laser irradiation of the AuNRs. No cytotoxicity was observed in absence of laser irradiation. In the second system, MRI-active Au nanomatryoshkas were developed. These are Au core-silica layer-Au shell nanoparticles, where Gd(III) ions are encapsulated within the silica layer between the inner core and outer Au layer of the nanoparticle (Gd-NM). This theranostic nanoparticle retains its strong near infrared optical absorption properties, essential for in vivo photothermal cancer therapy, while simultaneously providing increased T1 contrast in MR imaging by concentrating Gd(III) within the nanoparticle. Measurements of Gd-NM revealed a substantially enhanced T1 relaxivity (r1 ~ 17 mM-1 s-1) even at 4.7 T, surpassing conventional Gd(III)-DOTA chelating agents (r1 ~ 4 mM-1 s-1) currently in clinical use. The observed relaxivities are consistent with Solomon-Bloembergen-Morgan (SBM) theory, describing the longer-range interactions between the Gd(III) and protons outside the nanoparticle. These novel multifunctional systems open the door for the development of more efficient nanoplatforms for diagnosis and treatment of cancer. / Nanopartículas plasmônicas multifuncionais têm revelado elevado potencial para fototermia na região (NIR) do infravermelho e liberação controlada de fármacos para o tratamento de tumores sólidos. No entanto, a taxa de acumulação das nanoparticulas no tecido alvo, que depende da capacidade delas de escapar do sistema imunológico, e a habilidade de rastrear de maneira efetiva essas partículas in vivo ainda são limitadas. Para superar essas barreiras, dois sistemas diferentes foram desenvolvidos. O primeiro corresponde a um nanocarreador multifunctional, onde nanobastões de ouro funcionalizados com PEG foram agrupados dentro de vesículas de membranas de células naturais originarias de células cancerígenas de pulmão (A549) conjugadas com β-Lap (CM-β-lap-PEG-AuNRs). Nosso principal objetivo foi desenvolver um sistema multifuncional especifico para tratamento de câncer utilizando os antígenos e propriedades únicas da membrana das células cancerígenas combinados com as propriedades fototérmicas dos AuNRs e a atividade anticancerígena da β-Lap. Os resultados confirmaram o agrupamento dos PEG-AuNRs dentro das CM e irradiação com o laser no NIR levou ao rompimento das vesículas e liberação dos AuNRs e β-Lap. Estudos in vitro revelaram uma elevada e sinérgica citotoxicidade contra células A549, que pode ser atribuída a combinação da especifica toxicidade da β-Lap com o calor gerado pelos AuNRs por meio da irradiação com laser. Nenhuma citotoxicidade significativa foi observada na ausência de irradiação com laser. No segundo sistema, nanomatryoshkas de Au ativas em MRI foram desenvolvidas. Elas consistem em um núcleo de Au, uma camada intersticial de sílica, onde os íons de Gd(III) são encapsulados, e uma camada externa de Au (Gd-NM). Esta nanopartícula teranóstica mantém as propriedades de elevada absorção óptica no NIR, enquanto simultaneamente fornece um elevado contraste T1 em imagem por ressonância magnética por meio da concentração dos íons de Gd(III) dentro da nanoparticula. Medidas de Gd-NM revelaram uma relaxividade elevada (r1 ~ 17 mM-1 s-1 ) a 4,7 T, superando os convencionais agentes quelantes de Gd(III)-DOTA (r1 ~ 4 mM-1 s-1) utilizados clinicamente. As relaxividades observadas são consistentes com a teoria Solomon-Bloembergen-Morgan (SBM), descrevendo as interações de longo alcance entre Gd(III) e prótons de H fora da partícula. Os novos sistemas multifuncionais desenvolvidos abrem oportunidades para o desenvolvimento de nanoplataformas mais eficientes para o diagnóstico e tratamento de câncer.
|
2 |
Smart nanomaterials based on the photoactivated release of silver nanoparticles for bacterial control / Nanomateriais inteligentes baseados na liberação fotoativada de nanopartículas de prata para controle bacterianoBallesteros, Camilo Arturo Suarez 28 June 2017 (has links)
Smart nanomaterials can selectively respond to a stimulus and consequently be activated in specific conditions, as a result of their interaction with electromagnetic radiation, biomolecules, pH change, etc. These nanomaterials can be produced through distinct routes and be used in artificial skin, drug delivery, and other biomedical applications. In this thesis, two smart nanosystems were developed, viz., i) nanocapsules formed by aniline (A) and chitosan (CS) (A-CS) containing silver nanoparticles (AgNPs), with an average size of 78 ± 19 nm, and ii) polycaprolactone (PCL) nanofibers, fabricated by the electrospinning technique containing AgNP into their bulk, with a diameter of 417 ± 14 nm. A novel system, based on the incorporation of the as-prepared nanocapsules onto the surface of PCL nanofibers containing AgNps (antibacterial mats), was also developed. The methodology employed avoids the direct contact of silver nanoparticles with the host and optimizes its release to the surrounding environment. The AgNPs release was triggered by exposing the nanocapsules to light at 405 nm. Consequently, the electronic energy vibration resulting from the interaction of the irradiation with the surface plasmon band (SPR) of AgNps, breaking the hydrogen bonds of the nanocapsules and releasing of AgNPs at a time of 150 s. To understand the perturbation of AgNps-Nanocapsules against bacteria, membrane models using Langmuir technique with the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phospho-(1\'-rac-glycerol) (DPPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) were employed, which are the main components of cell membrane of Escherichia coli (E. coli). The results suggest that DPPG has more influence on the incorporation of the nanoparticles on the cell membrane. The antibacterial properties of the nanofibers/nanomaterials mats towards E. coli and Staphylococcus aureus (S. aureus) were investigated using the Agar diffusion test for 8 samples. The experiments revealed that the samples based on nanofibers/nanocapsules and irradiation presented a radius of inhibition of 2.58 ± 0.28 mm for S. aureus and 1.78 ± 0.49 mm for E. coli. This nanosystem showed to be highly interesting for biomedical applications. / Nanomateriais inteligentes podem responder seletivamente a um estímulo e consequentemente ser ativados em condições específicas, como resultado da sua interação com a radiação eletromagnética, mudança do pH, campo magnético, etc. Esses materiais podem ser produzidos através de distintas rotas e utilizados em aplicações como pele artificial, liberação de fármacos, e outras aplicações biomédicas. Nessa tese, dois nanossistemas inteligentes foram desenvolvidos, a saber: i) nanocápsulas formadas por anilina (A) e quitosana (CS) (A-CS) contendo nanopartículas de prata (AgNps), com um tamanho médio de 78 ± 19 nm, e ii) nanofibras de policaprolactona (PCL), fabricadas pela técnica de eletrofiação contendo AgNps em seu interior, com diâmetro de 417 ± 14 nm. Um terceiro sistema foi desenvolvido, baseado na incorporação das nanocápsulas na superfície das nanofibras de PCL contendo AgNps (manta antibacteriana). A metodologia utilizada evita o contato direto das nanopartículas de prata com o hospedeiro e otimiza sua liberação no meio ambiente. As AgNps liberadas foram acionadas pela exposição das nanocápsulas à um fonte de luz em 405 nm. Consequentemente, a vibração da energia eletrônica resultante da interação da irradiação com a banda plasmônica de superfície (SPR) das AgNps, quebra as ligações de hidrogênio da nanocápsula e libera as AgNps no meio em um tempo de 150 s. Para entender a perturbação das AgNps-nanocapsulas contra as bactérias, modelos de membrana foram usados através da técnica de Langmuir com os fosfolipídios 1,2-dipalmitoil-sn-glicero-3- fosfo-(1\'-rac-glicerol) (DPPG) and 1,2-dimiristoil-sn-glicero-3-fosfoetanolamina (DMPE), que são os principais componentes da membrana celular de Escherichia coli (E. coli). Os resultados sugerem que DPPG tem mais influência na incorporação das nanopartículas na membrana celular. As propriedades antibacterianas das mantas de nanofibras/nanomateriais contra E. coli e Staphylococus aureus (S. aureus) foram investigadas usando o teste de difusão Agar em 8 grupos, o qual revelou que o grupo contendo a nanofibra/nanocapsula e irradiação apresentou um raio de inibição de 2.58 ± 0.28 mm para S. aureus e 1.78 ± 0.49 mm para E. coli. Este nanossistema mostrou ser altamente interessante para aplicações biomédicas.
|
3 |
Smart nanomaterials based on the photoactivated release of silver nanoparticles for bacterial control / Nanomateriais inteligentes baseados na liberação fotoativada de nanopartículas de prata para controle bacterianoCamilo Arturo Suarez Ballesteros 28 June 2017 (has links)
Smart nanomaterials can selectively respond to a stimulus and consequently be activated in specific conditions, as a result of their interaction with electromagnetic radiation, biomolecules, pH change, etc. These nanomaterials can be produced through distinct routes and be used in artificial skin, drug delivery, and other biomedical applications. In this thesis, two smart nanosystems were developed, viz., i) nanocapsules formed by aniline (A) and chitosan (CS) (A-CS) containing silver nanoparticles (AgNPs), with an average size of 78 ± 19 nm, and ii) polycaprolactone (PCL) nanofibers, fabricated by the electrospinning technique containing AgNP into their bulk, with a diameter of 417 ± 14 nm. A novel system, based on the incorporation of the as-prepared nanocapsules onto the surface of PCL nanofibers containing AgNps (antibacterial mats), was also developed. The methodology employed avoids the direct contact of silver nanoparticles with the host and optimizes its release to the surrounding environment. The AgNPs release was triggered by exposing the nanocapsules to light at 405 nm. Consequently, the electronic energy vibration resulting from the interaction of the irradiation with the surface plasmon band (SPR) of AgNps, breaking the hydrogen bonds of the nanocapsules and releasing of AgNPs at a time of 150 s. To understand the perturbation of AgNps-Nanocapsules against bacteria, membrane models using Langmuir technique with the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phospho-(1\'-rac-glycerol) (DPPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) were employed, which are the main components of cell membrane of Escherichia coli (E. coli). The results suggest that DPPG has more influence on the incorporation of the nanoparticles on the cell membrane. The antibacterial properties of the nanofibers/nanomaterials mats towards E. coli and Staphylococcus aureus (S. aureus) were investigated using the Agar diffusion test for 8 samples. The experiments revealed that the samples based on nanofibers/nanocapsules and irradiation presented a radius of inhibition of 2.58 ± 0.28 mm for S. aureus and 1.78 ± 0.49 mm for E. coli. This nanosystem showed to be highly interesting for biomedical applications. / Nanomateriais inteligentes podem responder seletivamente a um estímulo e consequentemente ser ativados em condições específicas, como resultado da sua interação com a radiação eletromagnética, mudança do pH, campo magnético, etc. Esses materiais podem ser produzidos através de distintas rotas e utilizados em aplicações como pele artificial, liberação de fármacos, e outras aplicações biomédicas. Nessa tese, dois nanossistemas inteligentes foram desenvolvidos, a saber: i) nanocápsulas formadas por anilina (A) e quitosana (CS) (A-CS) contendo nanopartículas de prata (AgNps), com um tamanho médio de 78 ± 19 nm, e ii) nanofibras de policaprolactona (PCL), fabricadas pela técnica de eletrofiação contendo AgNps em seu interior, com diâmetro de 417 ± 14 nm. Um terceiro sistema foi desenvolvido, baseado na incorporação das nanocápsulas na superfície das nanofibras de PCL contendo AgNps (manta antibacteriana). A metodologia utilizada evita o contato direto das nanopartículas de prata com o hospedeiro e otimiza sua liberação no meio ambiente. As AgNps liberadas foram acionadas pela exposição das nanocápsulas à um fonte de luz em 405 nm. Consequentemente, a vibração da energia eletrônica resultante da interação da irradiação com a banda plasmônica de superfície (SPR) das AgNps, quebra as ligações de hidrogênio da nanocápsula e libera as AgNps no meio em um tempo de 150 s. Para entender a perturbação das AgNps-nanocapsulas contra as bactérias, modelos de membrana foram usados através da técnica de Langmuir com os fosfolipídios 1,2-dipalmitoil-sn-glicero-3- fosfo-(1\'-rac-glicerol) (DPPG) and 1,2-dimiristoil-sn-glicero-3-fosfoetanolamina (DMPE), que são os principais componentes da membrana celular de Escherichia coli (E. coli). Os resultados sugerem que DPPG tem mais influência na incorporação das nanopartículas na membrana celular. As propriedades antibacterianas das mantas de nanofibras/nanomateriais contra E. coli e Staphylococus aureus (S. aureus) foram investigadas usando o teste de difusão Agar em 8 grupos, o qual revelou que o grupo contendo a nanofibra/nanocapsula e irradiação apresentou um raio de inibição de 2.58 ± 0.28 mm para S. aureus e 1.78 ± 0.49 mm para E. coli. Este nanossistema mostrou ser altamente interessante para aplicações biomédicas.
|
4 |
Theranostic nanomaterials applied to the cancer diagnostic and therapy and nanotoxicity studies / Nanomateriais Teranósticos Aplicados à Problemática do Câncer e Estudos de Nanotoxicidade.Valeria Spolon Marangoni 29 June 2016 (has links)
Multifunctional plasmonic nanoparticles have shown extraordinary potential for near infrared photothermal and triggered-therapeutic release treatments of solid tumors. However, the accumulation rate of the nanoparticles in the target tissue, which depends on their capacity to escape the immune system, and the ability to efficiently and accurately track these particles in vivo are still limited. To address these challenges, we have created two different systems. The first one is a multifunctional nanocarrier in which PEG-coated gold nanorods were grouped into natural cell membrane vesicles from lung cancer cell membranes (A549) and loaded with β-lap (CM-β-lap-PEG-AuNRs). Our goal was to develop specific multifunctional systems for cancer treatment by using the antigens and the unique properties of the cancer cell membrane combined with photothermal properties of AuNRs and anticancer activity of β-lap. The results confirmed the assembly of PEG-AuNRs inside the vesicles and the irradiation with NIR laser led to disruption of the vesicles and release of the PEG-AuNRs and β-Lap. In vitro studies revealed an enhanced and synergic cytotoxicity against A549 cancer cells, which can be attributed to the specific cytotoxicity of β-Lap combined with heat generated by laser irradiation of the AuNRs. No cytotoxicity was observed in absence of laser irradiation. In the second system, MRI-active Au nanomatryoshkas were developed. These are Au core-silica layer-Au shell nanoparticles, where Gd(III) ions are encapsulated within the silica layer between the inner core and outer Au layer of the nanoparticle (Gd-NM). This theranostic nanoparticle retains its strong near infrared optical absorption properties, essential for in vivo photothermal cancer therapy, while simultaneously providing increased T1 contrast in MR imaging by concentrating Gd(III) within the nanoparticle. Measurements of Gd-NM revealed a substantially enhanced T1 relaxivity (r1 ~ 17 mM-1 s-1) even at 4.7 T, surpassing conventional Gd(III)-DOTA chelating agents (r1 ~ 4 mM-1 s-1) currently in clinical use. The observed relaxivities are consistent with Solomon-Bloembergen-Morgan (SBM) theory, describing the longer-range interactions between the Gd(III) and protons outside the nanoparticle. These novel multifunctional systems open the door for the development of more efficient nanoplatforms for diagnosis and treatment of cancer. / Nanopartículas plasmônicas multifuncionais têm revelado elevado potencial para fototermia na região (NIR) do infravermelho e liberação controlada de fármacos para o tratamento de tumores sólidos. No entanto, a taxa de acumulação das nanoparticulas no tecido alvo, que depende da capacidade delas de escapar do sistema imunológico, e a habilidade de rastrear de maneira efetiva essas partículas in vivo ainda são limitadas. Para superar essas barreiras, dois sistemas diferentes foram desenvolvidos. O primeiro corresponde a um nanocarreador multifunctional, onde nanobastões de ouro funcionalizados com PEG foram agrupados dentro de vesículas de membranas de células naturais originarias de células cancerígenas de pulmão (A549) conjugadas com β-Lap (CM-β-lap-PEG-AuNRs). Nosso principal objetivo foi desenvolver um sistema multifuncional especifico para tratamento de câncer utilizando os antígenos e propriedades únicas da membrana das células cancerígenas combinados com as propriedades fototérmicas dos AuNRs e a atividade anticancerígena da β-Lap. Os resultados confirmaram o agrupamento dos PEG-AuNRs dentro das CM e irradiação com o laser no NIR levou ao rompimento das vesículas e liberação dos AuNRs e β-Lap. Estudos in vitro revelaram uma elevada e sinérgica citotoxicidade contra células A549, que pode ser atribuída a combinação da especifica toxicidade da β-Lap com o calor gerado pelos AuNRs por meio da irradiação com laser. Nenhuma citotoxicidade significativa foi observada na ausência de irradiação com laser. No segundo sistema, nanomatryoshkas de Au ativas em MRI foram desenvolvidas. Elas consistem em um núcleo de Au, uma camada intersticial de sílica, onde os íons de Gd(III) são encapsulados, e uma camada externa de Au (Gd-NM). Esta nanopartícula teranóstica mantém as propriedades de elevada absorção óptica no NIR, enquanto simultaneamente fornece um elevado contraste T1 em imagem por ressonância magnética por meio da concentração dos íons de Gd(III) dentro da nanoparticula. Medidas de Gd-NM revelaram uma relaxividade elevada (r1 ~ 17 mM-1 s-1 ) a 4,7 T, superando os convencionais agentes quelantes de Gd(III)-DOTA (r1 ~ 4 mM-1 s-1) utilizados clinicamente. As relaxividades observadas são consistentes com a teoria Solomon-Bloembergen-Morgan (SBM), descrevendo as interações de longo alcance entre Gd(III) e prótons de H fora da partícula. Os novos sistemas multifuncionais desenvolvidos abrem oportunidades para o desenvolvimento de nanoplataformas mais eficientes para o diagnóstico e tratamento de câncer.
|
5 |
Otimização e caracterização de nanoestruturas de ouro e prata recobertas com uma camada ultrafina de MnO2, SiO2 ou TiO2: uma alternativa para aplicações das técnicas espectroscópicas intensificadas por superfícieMarques, Flávia Campos 26 July 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-09-20T12:04:51Z
No. of bitstreams: 1
flaviacamposmarques.pdf: 5444687 bytes, checksum: ee4ddf83c1895a69c8df07fd21fede21 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-10-01T19:24:51Z (GMT) No. of bitstreams: 1
flaviacamposmarques.pdf: 5444687 bytes, checksum: ee4ddf83c1895a69c8df07fd21fede21 (MD5) / Made available in DSpace on 2018-10-01T19:24:51Z (GMT). No. of bitstreams: 1
flaviacamposmarques.pdf: 5444687 bytes, checksum: ee4ddf83c1895a69c8df07fd21fede21 (MD5)
Previous issue date: 2018-07-26 / O presente trabalho abrange as sínteses e caracterizações nanobastões de ouro (AuNB) e nanopartículas esféricas de ouro e prata (AuNE e AgNE) recobertos por uma camada ultrafina de óxido de manganês, silício ou titânio. Utilizaram-se para caracterização das camadas dielétricas as técnicas UV-VIS, espectroscopia de absorção no infravermelho, difração raio X (XRD), voltametria cíclica (CV) e microscopia eletrônica de transmissão (TEM). As nanoestruturas plasmônicas (NP) utilizadas como substratos nas aplicações espectroscópicas são instável na presença de muitos analitos, o que pode levar à agregação e posteriormente à precipitação do material, inviabilizando a caracterização do adsorbato. O recobrimento das NP por camadas dielétricas aumenta fortemente a sua estabilidade estrutural, conservando suas propriedades plasmônicas. Nesse intuito, o escopo desse trabalho visou recobrir os AuNB por MnO2, SiO2 ou TiO2 e AuNE ou AgNE por TiO2 e verificar a sua aplicabilidade nas técnicas espectroscópicas de superfície. Por meio do deslocamento da banda de ressonância de plasmon de superfície localizado foi possível acompanhar a formação e o aumento da espessura da camada dielétrica adsorvida na interface do metal quando comparados às NP sem recobrimento, que são resultados das mudanças no índice de refração local às NP. A técnica de XRD foi utilizada para confirmar a formação dos materiais híbridos; por essa técnica foram observados halo não-cristalinos atribuídos aos óxidos e picos de difração característicos de nanoestruturas metálicas de Au. Além disso, foi possível caracterizar as NP de Au e Ag com os óxidos por meio da análise por TEM, em que foram observados recobrimentos uniformes das camadas de MnO2, SiO2 ou TiO2 envolvendo o núcleo metálico com espessuras inferiores a 6 nm. O uso da técnica de CV permitiu verificar que as cascas de óxidos não apresentaram orifícios. Os materiais híbridos otimizados foram utilizados como substratos espalhamento Raman intensificado por superfície (SERS) e fluorescência intensificada por superfície (SEF) para análise de adsorção da molécula IR-820. As medidas SERS utilizando as radiações incidentes 633 e 1064 nm mostraram um aumento significativo nas intensidades relativas de alguns modos vibracionais comparado ao espectro Raman da molécula livre, através dos quais foram realizadas as atribuições dos modos vibracionais. Já as medidas SEF obtidas com a radiação incidente 785 nm, observou-se um aumento da intensidade SEF para espessuras maiores de óxido, atribuídas ao aumento da distância entre adsorbato e a superfície condutora do metal. Além disso, foi estudada por SERS a adsorção de ácido 3-mercaptopropiônico (HMP) e ácido 4-mercaptobenzoico (HMB) nessas NP recobertas, e através dos resultados foram atribuídos os modos vibracionais mais significativos. Através dessas atribuições foi possível verificar o sitio de adsorção e a orientação das moléculas HMP e HMB. Os resultados obtidos confirmaram a formação da camada de óxido envolvendo o núcleo metálico. Além disso, as aplicações dos efeitos SERS e SEF mostraram-se bastante promissoras para os substratos sintetizados. / The present work covers the syntheses and characterizations of gold nanorods (AuNR) and gold and silver spherical nanoparticles (AuSN and AgSN) coated with ultrathin layers of manganese, silicon or titanium oxide. Dielectric layers were characterized by UV-Vis, infrared absorption spectroscopy, X ray diffraction (XRD), cyclic voltammetry (CV) and transmission electron microscopy (TEM) techniques. Plasmonic nanostructures (PN) which are used as substrates in spectroscopic applications are unstable in the presence of many analytes, thus leading to aggregation and subsequent precipitation. This instability makes the characterization of the adsorbate much more challenging. Coating PN with dielectric layers strongly increases its structural stability, while retaining their plasmonic properties. To this end, the scope of this work was to cover AuNR by ultrathin layers of MnO2, SiO2 or TiO2 and AuNS or AgNS by TiO2 and verify its applicability in surface spectroscopic techniques.
By means of displacement of the localized surface plasmon resonance band, it was possible to follow the formation and increase of the thickness of the dielectric layer adsorbed at the interface of the metal when compared to PN without coating, which are results of the changes in the local refractive index to PN. The XRD technique was used to confirm the formation of the hybrid materials. It was observed non-crystalline haloes attributed to the oxides and diffraction peaks characteristic of Au metallic nanostructures. Moreover, it was possible to characterize the Ag and Au PN with oxides by means of analysis by TEM, wherein was possible to confirm the presence of uniform layer coatings of MnO2, SiO2 or TiO2 surrounding the metallic core with a thickness below 6 nm. The use of the CV technique allowed verifying that the oxide shells did not have pinholes. The optimized hybrid materials were used as surface enhanced Raman scattering (SERS) and surface enhanced fluorescence (SEF) substrates for adsorption analysis of the IR-820 molecule. The SERS measurements using incident radiations at 633 and 1064 nm showed a significant increase in the relative intensities of some vibrational modes compared to the Raman spectrum of the free molecule, through which the assignments of the vibrational modes were performed. The SEF measurements obtained with the incident radiation 785 nm showed an increase in the SEF intensity for higher oxide thicknesses, which was attributed to the increase in the distance between adsorbate and the conductive surface of the metal. Moreover, adsorption of the 3-mercaptopropionic acid (MPA) and 4-mercaptobenzoic acid (MBA) molecules in these NP coated was studied using SERS. It was possible to identify and assign the most significant vibrational modes and confirm the adsorption site of MPA and MBA molecules. The results confirmed the successful formation of the oxide layers surrounding the metallic cores. Finally, the applications of the SERS and SEF effect have shown to be very promising for the synthesized substrates.
|
Page generated in 0.0692 seconds