• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organosilane Downstream Plasma On Ultra Low-k Dielectrics: Comparing Repair With Post Etch Treatment: Organosilane Downstream Plasma On Ultra Low-k Dielectrics:Comparing Repair With Post Etch Treatment

Calvo, Jesús, Steinke, Philipp, Wislicenus, Marcus, Gerlich, Lukas, Seidel, Robert, Clauss, Ellen, Uhlig, Benjamin 22 July 2016 (has links)
Plasma induced damage of ultra low-k (ULK) dielectrics is a common phenomenon in BEOL interconnects. The damage leads to an increase in k-value, which raises the RC delay, leading to increased power consumption and cross talk noise. Therefore, diverse repair and post etch treatments (PET) have been proposed to restore or reduce the ULK damage. However, current repair processes are usually based on non-plasma silylation, which suffers from limited chemistry diffusion into the ULK. Moreover, the conventional PET based on anisotropic plasma results in bottom vs. sidewall inhomogeneities of the structures (e.g. via and trench). To reduce these drawbacks, an organosilane downstream -plasma (DSP) was applied. This new application resulted in an increased resistance to ULK removal by fluorinated wet clean chemistries, preserving the ULK hydrophobicity, keeping its carbon content relatively high. The effective RC measured on 28 nm node patterned wafers treated with a DSP PET remains nevertheless comparable to the process of record (POR).

Page generated in 0.1302 seconds