• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 13
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Remote sensing of localized ion acoustic waves with multistatic passive radar /

Meyer, Melissa G. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 212-223).
22

Linear and nonlinear fluid instabilities in tokamaks

Amrolia, Zarathustra J. January 1988 (has links)
No description available.
23

Magnetohydrodynamic analysis of the stability of the plasmapause

Figueroa Viñas, Adolfo January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Bibliography: leaves 171-173. / by Adolfo Figueroa Vinãs. / Ph.D.
24

Determination of surface plasma structures in the kinetic regime.

Neuman, William Albert. January 1988 (has links)
A numerical study is done of a plasma in contact with a cold solid surface that is emitting a neutral gas. Two numerical models have been developed to describe the dominant phenomena of surface plasma structures. The first model entails a steady-state, kinetic treatment of the transport equations in one space dimension and one velocity dimension, to determine self-consistently the distribution functions of the interacting species and the electrostatic potential near the solid surface. The dominant phenomena in this region are the ionization of the neutral gas and the acceleration of the resulting ions by the electrostatic field in a pre-sheath region. Other effects involved are a Debye sheath structure between the solid surface and pre-sheath, and collisional trapping and untrapping of electrons in an electrostatic potential well that is predicted in the pre-sheath region. Results are presented from a nondimensional model with a monatomic returning neutral species and for diatomic molecular hydrogen returning from the surface. For each set of physical parameters chosen, a one parameter family of solutions is obtained. The second numerical model involves a steady-state treatment of the transport equations in a (x,v∥,v⊥) phase space for the interacting species. Included in this model are ionization of the refluxing monatomic neutrals, a self-consistently determined electrostatic potential and a nonlinear Fokker-Planck treatment of ion-ion Coulomb collisions. Both the region near the surface dominated by kinetic effects and the region away from the surface in which Coulomb collisional effects are significant are treated. Results are presented which identify the correct physical solution for the region near the surface from the permitted family found with the kinetic model. Additionally, results are shown which span a temperature range from the high temperature kinetic regime where Coulomb collisional effects are negligible, to the low temperature, highly collisional fluid regime. At low temperatures the collisional model agrees well with standard fluid techniques.
25

Plasma properties in high power impulse magnetron sputtering

Lundin, Daniel January 2008 (has links)
<p>The work presented in this thesis involves experimental and theoretical studies related to plasma properties in high power impulse magnetron sputtering (HiPIMS), and more specifically plasma transport. HiPIMS is an ionized PVD method based on conventional direct current magnetron sputtering (dcMS). In dcMS very little of the sputtered material is ionized since the plasma power density is not high enough. This is not the case for HiPIMS, where a substantial part is ionized, and thus presents many new opportunities for thin film growth. Understanding the dynamics of the charged species in the HiPIMS discharge is therefore of essential value when producing high-quality thin film coatings.</p><p>In the first part of the work a new type of anomalous electron transport was found. Investigations of the transport resulted in the discovery that this phenomenon could quantitatively be described as being related and mediated by highly nonlinear waves, likely due to the modified two-stream instability (MTSI), resulting in electric field oscillations in the MHz-range (the so-called lower hybrid frequency). Measurements in the plasma confirmed these oscillations as well as trends predicted by the theory of these types of waves. The degree of anomalous transport in the plasma could also be determined by measuring the current density ratio between the azimuthal current density (of which the Hall current density is one contribution) and the discharge current density, <em>J</em><em>φ</em><em> / J</em><em>D</em>. The results provided important insights into understanding the mechanism behind the anomalous transport.</p><p>It was furthermore found that the current ratio <em>J</em><em>φ</em><em> / J</em><em>D</em> is inversely proportional to the transverse resistivity, eta_perpendicular , which governs how well momentum is transferred from the electrons to the ions in the plasma. By looking at the forces involved in the charged particle transport it was expected that the azimuthally rotating electrons would exert a volume force on the ions tangentially outwards from the circular race track region. The effect of having an anomalous transport would therefore be a large fraction of highly energetic ions being transported sideways and lost to the walls. In a series of experiments, deposition rates as well as incoming ion energy distributions were measured directly at the side of the magnetron. It was found that a substantial fraction of sputtered material is transported radially away from the cathode and lost to the walls in HiPIMS as well as dcMS, but more so for HiPIMS giving one possible explanation to why the deposition rate for substrates placed in front of the target is lower for HiPIMS compared to dcMS. Furthermore, the recorded, incoming ion energy distributions confirmed theoretical estimations on this type of transport regarding energy and direction.</p>
26

Linear properties of the cross-field ion acoustic instability in a double plasma device.

Dempers, Clemens Arnold. January 1990 (has links)
This thesis deals with the dependence of the linear spatial growth rate of the cross-field ion acoustic instability on various plasma parameters. A kinetic theory model, with elastic and inelastic ion-neutral collisions included, is presented and used to conduct a numerical survey of the instability. The growth rate is computed as a function of distance into the plasma, taking into account the attenuation of the ion beam by charge exchange collisions. Further calculations show the variation in growth rate as a function of the following quantities: electron and ion beam temperature, electron density, beam velocity, background ion temperature, magnetic field, the angle between magnetic field direction and wave vector and the finite width of the plasma. The instability was observed in a double plasma device where an ion beam was passed through a background of stationary magnetized electrons. The magnetic field was sufficiently weak to allow approximately rectilinear ion motion. The growth rate of the wave was studied using interferometer techniques. It was identified by the dispersion relation as the cross-field ion acoustic wave propagating as the slow mode of the beam. It was found that the background ions play an important role in determining the phase velocity. Experimental data of the growth rate dependence on wave number, beam velocity and magnetic field strength were found to be well described by the theoretical model. The growth rate dependence of magnetic field direction on plasma width was furthermore found to be in qualitative agreement with the model. / Thesis (M.Sc.)-University of Natal, Durban, 1990.
27

Theoretical studies of the crossfield current-driven ion acoustic instability.

Bharuthram, Ramashwar. January 1979 (has links)
Abstract available in PDF file. / Thesis (Ph.D.)-University of Natal, 1979.
28

An investigation of MARFE induced H-L back transitions

Friis, Zachary W. January 2005 (has links)
Thesis (M. S.)--Nuclear and Radiological Engineering, Georgia Institute of Technology, 2006. / Dr. Cassiano de Oliveira, Committee Member ; Dr. John Mandrekas, Committee Member ; Dr. Weston M. Stacey, Committee Chair. Includes bibliographical references.
29

A Kalman Filter for Active Feedback on Rotating External Kink Instabilities in a Tokamak Plasma

Hanson, Jeremy M. January 2009 (has links)
The first experimental demonstration of feedback suppression of rotating external kink modes near the ideal wall limit in a tokamak using Kalman filtering to discriminate the n = 1 kink mode from background noise is reported. In order to achieve the highest plasma pressure limits in tokamak fusion experiments, feedback stabilization of long-wavelength, external instabilities will be required, and feedback algorithms will need to distinguish the unstable mode from noise due to other magnetohydrodynamic activity. When noise is present in measurements of a system, a Kalman filter can be used to compare the measurements with an internal model, producing a realtime, optimal estimate for the system's state. For the work described here, the Kalman filter contains an internal model that captures the dynamics of a rotating, growing instability and produces an estimate for the instability's amplitude and spatial phase. On the High Beta Tokamak-Extended Pulse (HBT-EP) experiment, the Kalman filter algorithm is implemented using a set of digital, field-programmable gate array controllers with 10 microsecond latencies. The feedback system with the Kalman filter is able to suppress the external kink mode over a broad range of spatial phase angles between the sensed mode and applied control field, and performance is robust at noise levels that render feedback with a classical, proportional gain algorithm ineffective. Scans of filter parameters show good agreement between simulation and experiment, and feedback suppression and excitation of the kink mode are enhanced in experiments when a filter made using optimal parameters from the experimental scans is used.
30

Terawatt Raman laser system for two-color laser plasma interactions

Sanders, James Christopher 18 September 2014 (has links)
In some high-field laser-plasma experiments, it is advantageous to accompany the main high-energy (~1 J) laser with a second high-energy pulse (~0.1 J) which has been frequency-shifted by ~10-20%. Such a pulse-pair would have a low walk-off velocity while remaining spectrally distinct for use in two-color pump-probe experiments. Moreover, by shifting the second pulse by ~plasma frequency, it is theoretically possible to exercise some amount of control over a variety of laser-plasma instabilities, including forward Raman scattering, electromagnetic cascading, and relativistic self-focusing. Alternatively, the two pulses may be counter-propagated so that the collide in the plasma and create a slowly-propagating beatwave which can be used to inject electrons into a laser wakefield accelerator. The design, characeterization, and performance of a hybrid chirped-pulse Raman amplifier (CPRA)/Ti-Sapphire amplifier are reported and discussed. This hybrid system allows for the generation of a high-energy (>200 mJ), broadband (15-20 nm bandwidth FWHM), short duration (>100 fs duration) laser sideband. When amplified and compressed, the Raman beam's power exceeds 1 TW. This sideband is combined with the primary laser system to create a bi-color terawatt laser system which is capable of performing two-color high-field experiments. This two-color capability can be added to any commercial terawatt laser system without compromising the energy, duration or beam quality of the primary system. Preliminary two-color laser-plasma experiments are also discussed. / text

Page generated in 0.0958 seconds