1 |
AUXIN BINDING PROTEIN 1 (ABP1) a jeho role v regulaci hladin auxinu v rostlinných buňkách / AUXIN BINDING PROTEIN 1 (ABP1) and its role in the auxin management in plant cellsČovanová, Milada January 2010 (has links)
Conclusions The role of AUXIN BINDING PROTEIN 1 (ABP1) in the auxin management in plant cells was followed using simplified model material of suspension-cultured cells of tobacco BY-2 line. ABP1 is a putative auxin receptor considered to mediate fast non-genomic responses to auxin and it can be involved in every aspect of the regulation of auxin responses, metabolism and transport. There are four major conclusions that could be made based on the results presented in this thesis: 1) Auxin binding protein 1 mediates both cell division and expansion in tobacco BY-2 cells. In standard cultivation conditions or at lower concentrations of 2,4-D in culture medium, ABP1 overexpression had no detectable impact on cell division, cell elongation or cell growth.. 5- times increased 2,4-D concentration stimulated weakly cell elongation. . Antisense suppression of ABP1 expression resulted in disturbance in both cell expansion and cell division intensity, suggesting that ABP1 is essential for the control of balance between cell division and cell elongation during the growth cycle. ABP1 is localized in endoplasmic reticulum of cells cultivated in standard medium supplemented with 1 μM 2,4-D and it appeared also at the plasma membrane following the IAA application. 2) ABP1 mediates intercellular auxin transport. Cells...
|
2 |
Funkce komplexu exocyst v regulaci dynamiky průduchů / Functions of Exocyst Complex in the Regulation of Stomata DynamicsRöder, Matěj January 2016 (has links)
Stomata are structures in plant epidermis which regulate contact between inner and outer environment of the plant by mediating their stomatal aperture. Many inner and outer signals contribute to the ontogenesis of the stomatal pattern. Guard cells undergo significant change of volume and surface during stomatal movement. This change of surface must be compensated by intracellular trafficking of membrane material because biological membrane has limited elasticity. Most of this trafficking takes place between plasma membrane and endosomal compartments. Complex exocyst is protein complex that ensures proper targeting of secretory vesicles to their destination on the plasma membrane. Function of this complex is essential for many cellular processes that require precise targeting of secretion. Mutation in gene Exo70B1 causes different development of the stomatal pattern. Plants with mutated Exo70B1 differ in stomatal size depending on the cultivation conditions more than wild type plant. Protein EXO70B1 is also directly involved in stomatal dynamics because mutants exo70B1 have retarded stomatal opening in response to light. This direct connection can be observed on the fluorescently labeled protein EXOB1 which significantly changes its localization during stomatal movements. None of these observed phenotypes is...
|
3 |
Diacylglycerol, novel protein kinase C isozymes [eta] and [theta], and other diacylglycerol activated proteins promote neuroprotective plasmalemmal sealing in B104 neurons in vitro and rat sciatic nerve axons in vivoZuzek, Aleksej 25 February 2013 (has links)
To survive, neurons and other eukaryotic cells must rapidly repair (seal) plasmalemmal damage. Such repair occurs by an accumulation of intracellular vesicles at or near the plasmalemmal disruption. Diacylglycerol (DAG)-dependent and cAMP-dependent proteins are involved in many vesicle trafficking pathways. Although recent studies have implicated the signaling molecule cAMP in sealing, no study has investigated how DAG and DAG-dependent proteins affect sealing and, whether pharmacological inhibition of such proteins could promote immediate repair of damaged mammalian axons. To this end, I investigated the role of DAG, protein kinase C (PKC) and other DAG-activated proteins in plasmalemmal sealing in B104 neurons in vitro and rat sciatic nerves in vivo. Using dye exclusion to assess Ca2+-dependent vesicle-mediated sealing of transected neurites of individually identifiable rat hippocampal B104 cells, I now report that, compared to non-treated controls, sealing probabilities and rates are increased by DAG and cAMP analogs that activate PKC and Munc13-1, and protein kinase A (PKA). Sealing is decreased by inhibiting DAG-activated novel protein kinase C isozymes η (nPKCη) and θ (nPKCθ) and, Munc13-1, the PKC effector myristoylated alanine rich PKC substrate (MARCKS) or phospholipase C (PLC). DAG-increased sealing is prevented by inhibiting MARCKS or PKA. Sealing probability is further decreased by simultaneously inhibiting nPKCη, nPKCθ and PKA. Extracellular Ca2+, DAG or cAMP analogs do not affect this decrease in sealing. I also report that applying inhibitors of nPKC and PKA to rat sciatic axons crush-severed in vivo under physiological calcium, do not promote immediate repair by polyethylene glycol (PEG), as assessed by compound action potential conduction and dye diffusion through crush sites. These and other data suggest that DAG increases sealing through MARCKS and that nPKCη, nPKCθ and PKA are all required to seal plasmalemmal damage in B104 neurons, and likely all eukaryotic cells. / text
|
Page generated in 0.0618 seconds