• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the effects of low-field Landau quantization in a two-dimensional electron system

Zhang, Yan-wei 21 July 2005 (has links)
In this paper, we mainly discuss the transport properties of the two-dimensional gas of a high-mobility GaAs/AlGaAs semiconductor heterostructure in high magnetic fields and low temperatures. We analyzed the measured longitudinal resistivity and Hall resistivity at the five different temperatures. We observed that the classical Hall effect is valid when the magnetic field is less than 0.25 Tesla; and the quantum Hall plateaux appeared obviously when the magnetic field is larger than 1.6 Tesla. We proceeded to analyze the longitudinal resistivity oscillation occurred in the magnetic fields between 0.477 Tesla and 1.483 Tesla. According to the Lifshitz-Kosevich (LK) formula, we can get the two-dimensional electron concentration, effective mass, and quantum scattering time from the quantum magnetoresistivity oscillation measurement. Our results suggested that the applicable range of the LK formula could be broader than the generally-assumed one. In quantum Hall effect regime at high magnetic field, we can calculate the h/e2 value from the quantum Hall plateaux value. In classical Hall effect regime, the three-dimensional electron concentration and classical mobility (classical scattering time) can be obtained. However, we find out that the zero-field Hall resistivity experimental value is not equal to zero, and this is not conformed to the standard theory. We tried to use the magnetic field shift and Hall resistivity shift to solve the problem, and compared both advantages of them. Finally, we observed the plateau-plateau phase transitions of the two-dimensional electron system

Page generated in 0.1094 seconds