1 |
Study on the Characteristics of Transalkylation over Pt/ZSM-12 CatalystLiao, Ping-Hsi 15 September 2006 (has links)
Zeolite structure can profoundly promote the activity of supported platinum. In addition, catalytic performances of Pt/ZSM-12 catalysts vary dramatically with platinum deposition procedure, namely ion exchange (IE) and impregnation procedure (IMP). Supported platinum prepared by IMP is more active than the Pt prepared by IE. The MCP/MCH ratio in benzene hydrogenation as an indication of bifunctional catalysis is significantly higher for IE Pt than IMP Pt. IE preparing platinum is located inside ZSM-12 pore and IMP preparing platinum is deposited on the external surface of ZSM-12. After steam treatment, it is found that Pt-atom perfectly migrates from internal channel to external surface and agglomerates into larger particle size for Pt(IE,0.100%,c) and Pt(IMP,0.123,a) catalysts. In contrast to the results of pure benzene hydrogenation at lower temperature (210¢J/240¢J), they are found that if all prepared various Pt/ZSM-12 catalysts were above the inversion temperature (Ti) then the benzene hydrogenation conversion over Pt(IE,0.100%,c) sample is higher than over Pt(IMP,0.123%,a) sample owing to latter provides less Pt-H+ active sites, as well as Pt(IMP,0.123%,a) sample is the most effective catalyst for toluene disproportionation and transalkylation with 1,2,4-trimethylbenzene. Owing to transformation generally is performed at higher temperature, such as above 400¢J, their operation temperatures are indeed above the inversion temperature (Ti) for all Pt/ZSM-12 catalysts. In situ comparing their benzene hydrogenation in transformation, including disproportionation and transalkylation, is suitable and valuable for understanding and determinating the characteristics of Pt/ZSM-12 zeolite catalysts. Relative conversion of benzene hydrogenation in transformation is the probe of characterizing the Pt-location onto ZSM-12 zeolite.
|
Page generated in 0.0905 seconds