• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NANOSTRUCTURED SENSORS FOR IN-VIVO NEUROCHEMICAL RECORDING

Silpa, Nagari 01 January 2007 (has links)
L-glutamate plays a vital role in central nervous system. It is a neurotransmitterassociated with several neurological disorders like Parkinson's disease, epilepsyand stroke. Continuous and fast monitoring of this neurotransmitter has become amajor concern for neuroscientists throughout the world. A simple, sensitive, and reliable L-glutamate microsensor with short responsetime has been developed using ceramic-based microelectrode arrays with platinum recording sites. The electrodes were modified by electrodeposition of Platinum black (Pt-black) to detect hydrogen peroxide (H2O2) which was produced by enzymatic reactions of glutamate oxidase immobilized on the electrode surface. Modification of Pt electrodes with Pt-black has been adoptedbecause the microscale roughness of Pt-black increases the effective surface area of the electrode and promotes efficiency of H2O2 electro-oxidation. The modified Pt recording sites were coated with m-phenylenediamine (mPD) and L-glutamate oxidase (L-GluOx). mPD acts as an barrier for extracellular interferents such as ascorbic acid and dopamine, thus increasing the selectivity of electrode for Glutamate (Glu). This modified microsensor was highly sensitive to H2O2(686.3??156.48 ??AmM-1cm-2), and Glutamate (492.2??112.67 ??AmM-1cm-2) at 700mV versus Ag/AgCl reference. Deposition of Pt nano-particles on recording sites enhanced the sensitivity to H2O2 by 2 times and the sensitivity to glutamate by 1.5 times.
2

Direct Current Block of Peripheral Nerve: Electrode and Waveform Development

Vrabec, Tina L. 27 January 2016 (has links)
No description available.

Page generated in 0.0602 seconds