• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antifreeze Proteins in Pelagic Fishes from Marquerite Bay (Western Antarctica)

Cullins, Tammy L 23 June 2008 (has links)
The Southern Ocean is home to two major types of fishes: endemics in the suborder Notothenioidii and representatives of oceanic fish families that are widely distributed in the midwater and benthic environments elsewhere (e.g. bathylagids, myctophids, liparids, and zoarcids) In most regions of the coastal Antarctic, e.g. the Ross Sea, there is a distinct separation in the pelagic communities at the shelf break between the oceanics (off-shelf) and the endemics (on-shelf). Coincidentally, in much of the coastal Antarctic, the shelf break also marks the boundary between a water column entirely composed of the very cold (-2°C ) Ice Shelf Water and an oceanic profile that includes warmer Circumpolar Deep Water (2°C at 200 m) at intermediate depths. The distinct separation in pelagic communities observed in most coastal regions of the Antarctic is not seen on the western Antarctic Peninsula (WAP), where circumpolar deep water intrudes to form a warmer midwater and oceanic species are strongly represented. It was hypothesized that the cold ice-shelf water, lethal to fishes without antifreeze glycoproteins (AFGP's) in their blood, was excluding the oceanic species from most of the Antarctic continental shelf waters. To test the hypothesis, nine species of fish captured in WAP shelf waters were tested for the presence of AFGP's. The oceanic fish families analyzed: Myctophidae (Electrona and Gymnoscopelus), Zoarcidae (Melanostigma), Gempylidae (Paradiplospinus), Paralepididae (Notolepsis), and Bathylagidae (Bathylagus) showed no antifreeze activity. Two endemic species captured in the same sampling program did show antifreeze activity: the important pelagic species Pleuragramma antarcticum (Nototheniidae) and the Bathydraconid (Vomeridens). The absence of AFGP's in the blood of Antarctic oceanic species makes a strong case for temperature exclusion of oceanic fishes in the coastal Antarctic.
2

Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton

Ombres, Erica H. 01 January 2013 (has links)
Respiration, metabolic enzyme assays, and body composition parameters were measured in the Antarctic krill Euphausia superba during the summer, fall and winter on the Western Antarctic Peninsula (WAP). E. superba of all sizes decrease their metabolism from the summer to the winter. These same parameters were also measured along the WAP during the austral fall 2010. E. superba's enzyme activity indicated that there was a latitudinal gradient to the decline in metabolism along the WAP with the more northerly sites having significantly higher metabolic enzyme activities than the sites to the south. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were measured in E. superba along the WAP to determine if there were any latitudinal trends. δ13C showed a significant trend with latitude with more depleted δ13C values in the southern portion of the WAP. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were also measured in two important prey fishes along the WAP, the silverfish Pleuragramma antarcticum and the myctophid Electrona antarctica. P. antarcticum had a more variable and more enriched δ13C value than E. antarctica indicative of P. antarcticum's more neritic habitat. There were no significant differences between the δ15N values of the two fish, indicating that although they feed in different areas they were feeding at the same trophic level. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were measured in twenty species in the marginal ice zone (MIZ) of the Weddell Sea at the beginning of the austral summer. Samples were taken from under the ice, at the ice edge and in the open ocean. A significant trend in the δ13C values of all species was found with the under-ice δ13C values being more depleted than those in the open ocean. This is most likely due to the reduced atmospheric exchange of CO2, upwelled water with depleted δ13C values, and continuous biological respiration under the ice, all of which contribute to very depleted δ13C values. δ15N values were significantly lower in the open ocean than the other ice conditions due to the increased reliance on primary production. The diapausing copepods Calanoides acutus and Rhincalanus gigas showed similar patterns in their isotopic signatures across the ice zones. Cluster analysis revealed trophic shifts between the different ice zones. The ice edge zone proved to contain the most species and was the best habitat for most species. The trophic shifts observed within species in the differing ice conditions mimicked the seasonal changes they undergo during the course of the productive season every year.

Page generated in 0.039 seconds