11 |
Chemická analýza a-CSi:H a a-CSiO:H vrstev / Chemical analysis of a-CSi:H and a-CSiO:H filmsOlivová, Lucie January 2021 (has links)
Plasma-enhanced chemical vapor deposition is a promising technology for the preparation of materials in the form of thin films with controlled physical-chemical properties, which can be affected by changing input precursors or deposition conditions as needed. In this thesis, plasma nanotechnology was used to synthesize thin films on silicon wafers. Tetravinylsilane was chosen as a precursor for the synthesis of the films. In addition to pure tetravinylsilane, mixtures of tetravinylsilane with argon and mixtures of tetravinylsilane with oxygen were also used as input precursors for film deposition, in different proportions of the individual component in the deposition mixture. Using chemical analyses, specifically infrared spectroscopy, photoelectron spectroscopy and selected ion techniques, the chemical structure of the prepared films was examined in detail and the dependence of this structure on deposition conditions and input precursors was studied. This thesis confirms, that by changing effective power supplied to the plasma discharge and selecting different input precursors, it is possible to control chemical structure, and thus the properties of the prepared nanolayers.
|
12 |
Příprava grafenu metodou CVD / The preparation of Grafen by method CVDProcházka, Pavel January 2012 (has links)
This diploma thesis is mainly focused on the fabrication of graphene layers on the copper foil by the Chemical Vapor Deposition (CVD). For this purpose the high-temperature chamber for the production of the graphene was completed and fully automated. The production of the high area graphene on the copper foil was experimentally achieved. The Raman microscopy and X-ray photoelectron spectroscopy measurements proved that the produced graphene is mostly a monolayer. Graphene layer was transferred on non-conductive substrate.
|
13 |
Příprava a charakterizace elektrických vlastností CVD grafenových monokrystalů / The preparation and characterisation of electrical properties of graphene CVD monocrystalsHulva, Jan January 2014 (has links)
Chemická depozice grafenu z plynné fáze (CVD) je metoda schopná produkovat grafenové monovrstvy velkých velkých rozměrů. Část experimentální práce v rámci této diplomové práce je zaměřena na depozici a analýzu grafenových monokrys- talů připravených metodou CVD na měděném substrátu. Pro analýu grafénových domén je použito technik optické mikroskopie, elektronové mikroskopie, mikroskopie atomárních sil a Ramanovy spektroskopie. Úkolem další části je studium defektů po- zorovaných na mědi po depozici grafenu pomocí energiově disperzní rentgenové spek- troskopie. Množství těchto defektů bylo odstraněno úpravou depozičního systému ačkoliv takto nebylo dosaženo eliminování všech typů defektů. Poslední část této práce se zabývá měření elektro-transportních vlastností grafenu. Výsledky této části zahrnují měření ve vakuu se zapojeným hradlovým napětím a měření při nízkých teplotách v magnetickém poli.
|
14 |
Příprava grafenových vrstev pokrytých Ga atomy a charakterizace jejich elektrických vlastností / The preparation of graphene layers modified by Ga atoms and characterisation of their electrical propertiesPiastek, Jakub January 2015 (has links)
This master's thesis deals with the study of electric properties of graphene layers covered by Ga atoms in UHV conditions. The substrates were prepared by using laser litography and the graphene layer was prepared by using chemical vapor deposition (CVD). Dependence of Dirac point location on gallium atoms deposition time and influence of electrical properties of graphene on hydrogen atoms deposition time were studied. Experimental results and their evaluation are discussed.
|
15 |
Jak souvisí vlastnosti atmosférických aerosolů s meteorologickými veličinami a koncentracemi plynných polutantů? / What is a connection between atmospheric aerosols, meteorological parameters and gaseous pollutants?Slezáčková Zíková, Naděžda January 2014 (has links)
Title: What is the connection between atmospheric aerosols, meteorological pa- rameters and gaseous pollutants? Author: RNDr. Naděžda Slezáčková Zíková Department: Department of Meteorology and Environment Protection Supervisor: Ing. Vladimír Ždímal, Dr. Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fun- damentals, Czech Academy of Sciences, v.v.i. Abstract: Five years of atmospheric aerosol (AA) measurements at rural back- ground station Košetice were compared with meteorological records and gaseous pollutants concentrations. The sampling and data analysis of AA data is de- scribed, and the statistical evaluation is done. The variability in the AA con- centrations is significant; the long-term measurements of AA, over the period at least several years, and the differentiation according to the season of the year are thus necessary. The clearly expressed annual cycle of AA concentrations is mainly influenced by two phenomena. From April to September, the total AA concentration cycle is driven mainly by the new particles formation events, from October to March, the concentrations are strongly influenced by particles coming from long-range transport and/or from the regional pollution. The relationship between AA and meteorological parameters, however, is not only season...
|
16 |
Tlakový senzor typu MEMS využívající nanokompozity / MEMS pressure sensor utilizing nanocompositesŠeda, Miroslav January 2008 (has links)
The main goal of this work is to introduce with the basic technologies of manufacturing MEMS (Micro-electro-mechanical-systems). Further there is mentioned properties and manufacturing of CNT (Carbon nanotubes), used in manufacturing of capacitance pressure sensor.
|
17 |
Katodové nanostruktury v MEMS aplikacích / Cathode nanostructures in MEMS applicationsPekárek, Jan January 2008 (has links)
The main goal of this work is to introduce new carbon structures - carbon nanotubes. The main objective of this work is to take advantage of the unique characteristic of carbon nanotubes to emit electrons at very low supply voltage.
|
18 |
Analýza šíření vibrací spojeným strukturálně akustickým prostorem / Vibration Propagation Analysis of Coupled Structure Acoustic SpaceKostelník, Jan January 2011 (has links)
The aim of this Master’s thesis Vibration Propagation Analysis of Coupled Structure Acoustic Space is to analyze vibration propagation in combustion engine, from combustion space through solid structure to fluid surroundings. Then analyze the noise increase as pressure changing in fluid space around the solid structure. There was made a analyze of single piston engine in different frequency and piston location. A simulation of distribution of a pressure waves was made in an ANSYS application.
|
19 |
Mechanismus přenosu signálu hemovými senzorovými proteiny detekujícími kyslík / Molecular mechanisms of signal transduction in model heme-containing oxygen sensor proteinsStráňava, Martin January 2016 (has links)
EN Heme containing gas sensor proteins play important role in bacterial physiology in regulating many processes such as cell differentiation, virulence, biofilm formation or intercellular communication. For their structure, typical modular architecture is characteristic where various sensor domains (usually at the N-terminus) regulate the activity of the catalytic or functional domains (usually at the C-terminus). In this dissertation thesis, we focused on three representatives from the group of oxygen sensing proteins, namely histidine kinase AfGcHK, diguanylate cyclase YddV, phosphodiesterase EcDOS and also on protein RR, which is the interaction partner of AfGcHK. The main aim of the thesis was to study intra-protein/inter-domain signal transduction in two representatives of heme sensor proteins with a globin fold of the sensor domain (AfGcHK, YddV) and in one representative with PAS fold of the sensor domain (EcDOS). Another objective was to describe inter-protein signal transduction in the two component signaling system AfGcHK-RR and structurally characterize these two interacting partners. Emphasis was also placed on the study of the interaction between model sensor domains and different signaling molecules and also on function of individual amino acids involved in the binding of these...
|
20 |
Nové přístupy k chemické modifikaci diamantových povrchů / Novel approaches to chemical modification of diamond surfaceBartoň, Jan January 2020 (has links)
1 Abstract Diamond is a unique material for its physical and chemical stability. However, many advance applications rely on surface functionalisation. Here, two types of diamond were modified on the surface - thin layer of chemical vapor deposition (CVD) and nanodiamond particles (NDs) high pressure and high temperature (HPHT). The aim of CVD surface modification was to prepare photosensitised, conductive, diamond electrodes for dye sensitized solar cells (DSSC). For this purpose, a thin diamond layer doped with boron was deposited on the silicon wafer. Boron doping provided p-type (semi)conductivity to diamonds. The surface of the diamond was hydrogenated with H-plasma, and a short carbon linker with a protected amino group was UV-photografted to the surface. In another study, a photoconverting dye (P1) was covalently attached to the amine-linker. Furthermore, a dye designed based on donor-π-acceptor (D-π-A) concepts was attached to the surface. Finally, a systematic study was done for differently conductive diamond layer and the underlying silicon wafer These experiments gradually lead to the highest ever reported photocurrents of 6.6 µA cm2 for a flat photosensitised boron-doped-diamond (BDD) electrode. Monomolecular layer surface functionalizations on CVD diamond are difficult to detect or even quantify...
|
Page generated in 0.0442 seconds