• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Investigation of the Formability of ZEK100 Mg Alloy Using Pneumatic Bulge Formability Testing Methods

Bourgeois, John Briou 09 December 2016 (has links)
The current study investigates the formability of ZEK100, a rare-earth containing magnesium alloy, using an in-house developed technique of pneumatic bulge forming. The thesis pursued innovation of sample preparation, testing, and experimental data analysis in order to create several forming limit diagrams (FLDs) of critical importance for determining a methodology for Mg formability. Samples were bulged through elliptical and circular dies at room temperature, 150 C, and 250 C, in two orientations, rolling direction (RD) and transverse direction (TD), in order to determine temperature dependence and orientation characteristics. The current research concluded ZEK100 is not a suitable alloy for room temperature forming processes used in automotive industries. Little difference between safe and marginal, as well as marginal and failure strain ratios was seen for RD orientation testing, while greater resolution is evident for TD orientation testing. ZEK100 exhibits a temperature dependence in relation to limiting strain between RD and TD.
2

INTEGRATED APPROACH TO THE SUPERPLASTIC FORMING OF MAGNESIUM ALLOYS

Abu-Farha, Fadi K. 01 January 2007 (has links)
The economical and environmental issues associated with fossil fuels have been urging the automotive industry to cut the fuel consumption and exhaust emission levels, mainly by reducing the weight of vehicles. However, customers increasing demands for safer, more powerful and luxurious vehicles have been adding more weight to the various categories of vehicles, even the smallest ones. Leading car manufacturers have shown that significant weight reduction, yet satisfying the growing demands of customers, would not be feasible without the extensive use of lightweight materials. Magnesium is the lightest constructional metal on earth, offering a great potential for weight-savings. However, magnesium and its alloys exhibit inferior ductility at low temperatures, limiting their practical sheet metal applications. Interestingly, some magnesium alloys exhibit superplastic behaviour at elevated temperatures; mirrored by the extraordinarily large ductility, surpassing that of conventional steels and aluminium alloys. Superplastic forming technique is the process used to form materials of such nature, having the ability to deliver highly-profiled, yet very uniform sheet-metal products, in one single stage. Despite the several attractions, the technique is not widely-used because of a number of issues and obstacles. This study aims at advancing the superplastic forming technique, and offering it as an efficient process for broader utilisation of magnesium alloys for sheet metal applications. The focus is primarily directed to the AZ31 magnesium alloy, since it is commercially available in sheet form, possesses good mechanical properties and high strength/weight ratio. A general multi-axial anisotropic microstructure-based constitutive model that describes the deformation behaviour during superplastic forming is first developed. To calibrate the model for the AZ31 magnesium alloy, systematic uniaxial and biaxial stretching tests are carried out over wide-ranging conditions, using 3 specially-designed fixtures. In a collaborative effort thereafter, the calibrated constitutive model is fed into a FE code in conjunction with a stability criterion, in order to accurately simulate, control and ultimately optimise the superplastic forming process. Special pneumatic bulge forming setup is used to validate some proposed optimisation schemes, by forming sheets into dies of various geometries. Finally, the materials post-superplastic-forming properties are investigated systematically, based on geometrical, mechanical and microstructural measures.

Page generated in 0.0644 seconds