• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An evaluation of pocket-model, numerical readout breath alcohol testing instruments

Van Tassel, William Edward 15 November 2004 (has links)
Eight small-scale breath alcohol measurement devices were tested for accuracy, precision and the ability to not yield false positive and false negative readings. These pocket-sized breath testers (PMBTs), which provided numerical readout of BrAC to the 100th of a percent, were smaller than evidential and preliminary breath test instruments (EBTs and PBTs). The smallest devices were approximately the same size of a cigarette lighter. Designed to provide drinkers feedback about their individual alcohol levels, the PMBTs ranged in price from $40-100 USD. The devices were first tested under laboratory conditions with alcohol solution simulators providing the alcoholic samples. They were then tested with human drinkers, under controlled field conditions. Each device was tested at multiple alcohol levels. Two of the eight PMBTs failed to complete all levels of testing and were excluded from the study. All PMBTs demonstrated the ability to not yield false positive and false negative readings. No device met NHTSA performance criteria for accuracy (systematic error) in testing EBTs at every alcohol level tested. An interaction between PMBTs and the alcohol test levels was found. Thus, accuracy was found to be dependent upon the alcohol level at which the devices were tested. No device met NHTSA performance criteria for precision in testing EBTs at every alcohol level tested. Precision varied depending on the testing condition. There was less precision under controlled field conditions than under laboratory conditions. Five of the six PMBTs that completed the testing overestimated BrAC; only one device read below actual BrAC. Ramifications of the findings are discussed, regarding the overestimation and underestimation of BrAC and the possibility of manufacturers intentionally calibrating the devices to overestimate BrAC. Potential PMBT users are discussed and areas for future research are addressed.
2

Development and Evaluation of a Sub-Grid Combustion Model for a Landscape Scale 3-D Wildland Fire Simulator

Clark, Michael M. 01 July 2008 (has links)
A mixture-fraction-based thermodynamic equilibrium approach for modeling gas-phase combustion was adapted and used in FIRETEC, a wildfire computational fluid dynamics model. The motivation behind this work was the desire to incorporate the features of complex chemistry calculations from the thermodynamic equilibrium model into FIRETEC without significantly increasing the computational burden of the program. In order to implement the mixture-fraction-based thermodynamic equilibrium approach, a sub-grid pocket model was developed to simulate the local mixture fraction of sub-grid flame sheets. Numerical simulations of wildfires were performed using FIRETEC with the new sub-grid, mixture-fraction-based pocket model to model gas-phase combustion. The thermodynamic equilibrium model was used to calculate flame temperatures and combustion products, including CO2 and CO, for sub-grid, gas-phase combustion in FIRETEC simulations. Fire spread rates from simulations using the new sub-grid combustion model were 25-100% higher than fire spread rates from previous FIRETEC simulations, but the successes of modeling propagating fire lines and calculating detailed equilibrium combustion products from simulated sub-grid flame sheets demonstrated the feasibility of this new approach. Future work into the fine-tuning of pocket model parameters and modifying the conservation equation for energy in FIRETEC was recommended.

Page generated in 0.0605 seconds