• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coping with the cold: heterothermic mammals provide a new paradigm for surfactant composition and function / Carol Ormond.

Ormond, Carol Jane January 2003 (has links)
"November, 2003" / Includes bibliographical references (leaves 240-264) / xix, 264 : ill. (some col.), plates ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, School of Earth and Environmental Sciences, Discipline of Environmental Biology, 2004
2

Heat Shock Response Inhibition and Gene Expression in <em>Xenopus Laevis</em> Cultured Cells

Manwell, Laurie January 2006 (has links)
Various genes have evolved to protect the cell against stressor-induced damage or death including the heat shock proteins (HSPs). Stressor-induced HSP gene expression involves the activation of heat shock factor (HSF), which binds to the heat shock element (HSE) found in the promoter region of <em>hsp</em> genes. Previously, our laboratory has examined the expression and function of <em>hsp</em> genes in the South African clawed frog, <em>Xenopus laevis</em>. Amphibians are particularly susceptible to adverse environmental conditions, including high temperatures and toxicants. In contrast to the many known inducers of HSF activation in poikilothermic vertebrates, few inhibitors have been either discovered or described in the literature. The present study has compared for the first time the effect of two heat shock response (HSR) inhibitors, quercetin and KNK437, on <em>hsp</em> gene expression in <em>Xenopus</em> A6 cells, demonstrating their efficacy in poikilotherms. Northern blot and densitometric analysis showed that cells treated with either quercetin or KNK437 decreased the heat shock-induced accumulation of <em>hsp70</em>, <em>hsp47</em>, and <em>hsp30</em> mRNAs. Additionally, constitutive levels of <em>hsp47</em> and <em>hsc70</em> mRNAs were reduced. In comparison, neither quercetin nor KNK437 affected the levels of constitutively expressed <em>ef1&alpha;</em> mRNAs under control or heat shock conditions. Western blot and densitometric analysis in this study showed that under heat shock conditions, exposure to quercetin or KNK437 significantly decreased the accumulation of HSP30, and that KNK437 was more effective in doing so than quercetin. In comparison, levels of actin were not significantly affected by either heat shock or exposure to DMSO, quercetin, or KNK437. These findings suggest that one mechanism by which quercetin and KNK437 inhibits the HSR in <em>Xenopus</em> is through the inhibition of HSF activity. <br /><br /> Results of this study also suggest that KNK437 inhibits the acquisition of thermotolerance in poikilotherms, similar to observations in mammalian systems. In the presence of KNK437, cells given a 2 h heat pretreatment at 33ºC followed by a thermal challenge for 1 h at 37ºC, showed numerous ruffled membrane edges and some aggregates of disrupted stress fibers. In comparison, cells directly challenged for 1 h at 37ºC, showed a marked decrease in HSP30, which was located predominantly at the cellular periphery in conjunction with actin aggregates. These cells showed virtually no intact stress fibers spanning cells and no coherent cell-cell connections. A 3-D analysis of cells given a 1 h thermal challenge at 37ºC (after a prior 2 h heat shock at 33ºC) in the absence of KNK437, showed numerous linear actin bundles transversing the entire cell, even extending into areas of cell-cell contact, and abundant HSP30 concentrated in the perinuclear region surrounding an intact nucleus. However, in the presence of KNK437, there was a significant emergence of membrane ruffles indicating global instability of cellular adhesion. This study has demonstrated that KNK437, which is the more specific and efficient HSR inhibitor, will be an important inhibitor to compare with the well-documented quercetin for future investigations.
3

Heat Shock Response Inhibition and Gene Expression in <em>Xenopus Laevis</em> Cultured Cells

Manwell, Laurie January 2006 (has links)
Various genes have evolved to protect the cell against stressor-induced damage or death including the heat shock proteins (HSPs). Stressor-induced HSP gene expression involves the activation of heat shock factor (HSF), which binds to the heat shock element (HSE) found in the promoter region of <em>hsp</em> genes. Previously, our laboratory has examined the expression and function of <em>hsp</em> genes in the South African clawed frog, <em>Xenopus laevis</em>. Amphibians are particularly susceptible to adverse environmental conditions, including high temperatures and toxicants. In contrast to the many known inducers of HSF activation in poikilothermic vertebrates, few inhibitors have been either discovered or described in the literature. The present study has compared for the first time the effect of two heat shock response (HSR) inhibitors, quercetin and KNK437, on <em>hsp</em> gene expression in <em>Xenopus</em> A6 cells, demonstrating their efficacy in poikilotherms. Northern blot and densitometric analysis showed that cells treated with either quercetin or KNK437 decreased the heat shock-induced accumulation of <em>hsp70</em>, <em>hsp47</em>, and <em>hsp30</em> mRNAs. Additionally, constitutive levels of <em>hsp47</em> and <em>hsc70</em> mRNAs were reduced. In comparison, neither quercetin nor KNK437 affected the levels of constitutively expressed <em>ef1&alpha;</em> mRNAs under control or heat shock conditions. Western blot and densitometric analysis in this study showed that under heat shock conditions, exposure to quercetin or KNK437 significantly decreased the accumulation of HSP30, and that KNK437 was more effective in doing so than quercetin. In comparison, levels of actin were not significantly affected by either heat shock or exposure to DMSO, quercetin, or KNK437. These findings suggest that one mechanism by which quercetin and KNK437 inhibits the HSR in <em>Xenopus</em> is through the inhibition of HSF activity. <br /><br /> Results of this study also suggest that KNK437 inhibits the acquisition of thermotolerance in poikilotherms, similar to observations in mammalian systems. In the presence of KNK437, cells given a 2 h heat pretreatment at 33ºC followed by a thermal challenge for 1 h at 37ºC, showed numerous ruffled membrane edges and some aggregates of disrupted stress fibers. In comparison, cells directly challenged for 1 h at 37ºC, showed a marked decrease in HSP30, which was located predominantly at the cellular periphery in conjunction with actin aggregates. These cells showed virtually no intact stress fibers spanning cells and no coherent cell-cell connections. A 3-D analysis of cells given a 1 h thermal challenge at 37ºC (after a prior 2 h heat shock at 33ºC) in the absence of KNK437, showed numerous linear actin bundles transversing the entire cell, even extending into areas of cell-cell contact, and abundant HSP30 concentrated in the perinuclear region surrounding an intact nucleus. However, in the presence of KNK437, there was a significant emergence of membrane ruffles indicating global instability of cellular adhesion. This study has demonstrated that KNK437, which is the more specific and efficient HSR inhibitor, will be an important inhibitor to compare with the well-documented quercetin for future investigations.
4

World-wide body size patterns in freshwater fish by geography, size class, trophic level, and taxonomy

Adhikari, Shishir 01 September 2015 (has links)
No description available.

Page generated in 0.0454 seconds