1 |
[en] STATE SPACE MODEL FOR TIME SERIES WITH BIVARIATE POISSON DISTRIBUTION: AN APPLICATION OF DURBIN-KOOPMAN METODOLOGY / [pt] MODELO EM ESPAÇO DE ESTADO PARA SÉRIES TEMPORAIS COM DISTRIBUIÇÃO POISSON BIVARIADA: UMA APLICAÇÃO DA METODOLOGIA DURBIN-KOOPMANSERGIO EDUARDO CONTRERAS ESPINOZA 15 September 2004 (has links)
[pt] Nesta tese, consideramos um modelo de espaço de estado bivariado para dados de contagem. A abordagem usada para resolver integrais não-analíticas que se apresentam no modelo é uma natural extensão da metodologia proposta por Durbin e Koopman - (DK), no sentido de que o Modelo Gaussiano
Aproximador deve possuir algumas matrizes de covariâncias diagonais. Esta modificação traz a vantagem de viabilizar o uso do tratamento univariado para séries multivariadas com as recursões de Kalman, o
qual, como se sabe, é mais eficiente do que o tratamento usual e facilita o uso de inicializações exatas destas mesmas recursões. O vetor de estado do modelo proposto é definido usando-se abordagem estrutural, onde os elementos do vetor de estado têm interpretação direta como tendência e sazonalidade. Apresentamos
exemplos simulados e reais para ilustrar o modelo. / [en] In this thesis we consider a state space model for bivariate observations of count data. The approach used to solve the non analytical integrals that appears as the solution of the resulting non-Gaussian filter is a natural extension of the methodology advocated by Durbin and Koopman (DK). In our approach the aproximated Gaussian Model (AGM), has a diagonal Covariance matrix, while in the original DK, this is a
full matrix. This modification make it possible to use univariate Kalman recursoes to construct the AGM, resulting in a computationally more efficient solution for the estimation of a Bivariate Poisson model. This also facilitates the use of exact initialization of those recursions. The state vector is specified using the structural approach, where the state elements are components which have direct interpretation, such as
trend and seasonals. In our bivariate set up the dependence between the bivariate vector of time series is accomplished by use of common components which drive both series. We present both simulation and
real life examples illustrating the use of our model.
|
Page generated in 0.0654 seconds