• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of the polar cap boundary and the auroral oval in the nightside ionosphere

Pitkänen, T. (Timo) 31 May 2011 (has links)
Abstract The high-latitude polar ionosphere is characterized by two regions, the polar cap and the auroral oval. In the polar cap, the geomagnetic field lines are open and connect to the solar wind, whereas the field lines in the auroral oval are closed and map to the plasma sheet and the plasma sheet boundary layer in the magnetosphere. The two substantially different magnetic and plasma domains are separated by a separatrix, the polar cap boundary (PCB), which is an ionospheric projection of the open-closed field line boundary (OCB) in the magnetosphere. In this thesis, a new method to determine the location of the PCB in the nightside ionosphere based on electron temperature measurements by EISCAT incoherent scatter radars is introduced. Comparisons with other PCB proxies like poleward boundary of the auroral emissions, poleward edge of the auroral electrojets and poleward boundary of energetic particle precipitation show general agreement. By applying the method to several events together with other supporting ground-based and space-borne observations, dynamic processes and phenomena in the vicinity of the PCB and inside the auroral oval are studied. The main results include the following. During substorm expansion, the PCB moves poleward in a burstlike manner with individual bursts separated by 2–10 min, indicating impulsive reconnection in the magnetotail. In one event, a possible signature of the high-altitude counterpart of the Earthward flowing field-aligned current of the Hall current system at the magnetotail reconnection site is observed. Investigation of the relation between the auroral activity and the local reconnection rate estimated from the EISCAT measurements reveals direct association between individual auroral poleward boundary intensifications (PBIs) and intensifications in the ionospheric reconnection electric field within the same MLT sector. The result confirms earlier suggestions of positive correlation between PBIs and enhanced flux closure in the magnetotail. In another event, quiet-time bursty bulk flows (BBFs) and their ionospheric signatures are studied. The BBFs are found to be consistent with the so called "bubble" model with Earthward fast flows inside the region of depleted plasma density (bubble). The tailward return flows show an interesting asymmetry in plasma density. Whereas the duskside return flows show signatures of a depleted wake, consistent with a recent suggestion, no similar feature is seen for the dawnside return flows, but rather increase in density. The BBFs are associated with auroral streamers in the conjugate ionosphere, consistently with previous findings. The related ionospheric plasma flow patterns are interpreted as ionospheric counterpart of the BBF flows, excluding the dawnside return flows which could not be identified in the ionosphere. The BBFs and streamers are found to appear during an enhanced reconnection electric field in the magnetotail.
2

Large scale plasma density perturbations in the polar F-region ionosphere

2015 February 1900 (has links)
The most compelling evidence of the complex interaction between the geomagnetic field of the Earth and the magnetic field of the Sun is found in the polar ionosphere. Large scale F-region plasma density perturbations result from the coupling between the two fields. Plasma density enhancements known as ionization patches, and depletions can have lifetimes of several hours in the F region and are almost always present everywhere throughout the nighttime polar ionosphere. The perturbations can seed ionospheric irregularities that severely hamper communication and navigational networks, even during times of subdued geomagnetic activity. Up until recently, it has been difficult to study the perturbations due to the remoteness of their location. In the past decade an array of optical and radio instruments have been deployed to the Canadian sector of the Arctic, enabling a more thorough sampling of the polar ionosphere and the large scale perturbations therein. In this work, common volume measurements from the Rankin Inlet Super Dual Auroral Radar Network (SuperDARN), Resolute Bay Incoherent Scatter Radar - North (RISR-N) and Optical Mesosphere and Thermosphere Imagers (OMTI) system at Resolute Bay are employed to investigate the generation mechanisms, transport properties, and optical and radio signatures of the large scale perturbations. A model connecting the optical signatures of patches to their velocity profile through the ionosphere is introduced and applied to OMTI data. In addition, an algorithm is developed to detect the presence of patches using RISR-N. Using the algorithm, a survey of patches sampled over several days is conducted, providing a comprehensive account of the variable polar ionosphere in terms of its plasma state parameters. Furthermore, the algorithm is used to diagnose patches as a primary source of coherent backscatter for the Rankin Inlet SuperDARN radar. Lastly, the generation of a deep plasma density depletion is analyzed using the three aforementioned instruments. Using a model, it is shown that such perturbations can be forged by intense frictional heating events in the polar ionosphere on a time scale of 15 minutes, and can subsequently be transported through the region.

Page generated in 0.0539 seconds