• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Holocene Spread of Spruce in Scandinavia

Giesecke, Thomas January 2004 (has links)
<p>The Holocene spread of <i>Picea abies</i> in Scandinavia provides an excellent opportunity for detailed study of the dynamics of tree spread and population expansion. Early- and mid-Holocene macrofossil evidence for the presence of <i>Picea abies</i> in Scandinavia has questioned traditional interpretations of the timing and direction of its spread. This study aims to determine the pattern of the spread of <i>Picea abies</i> in Scandinavia from pollen and other data, to evaluate the significance of possible early outpost populations and to deduce possible factors that influenced the spread and population expansion of <i>Picea abies</i> in Scandinavia. </p><p>Palaeoecological investigations were carried out on the sediments of four small lakes in central Sweden to gain detailed insight into the dynamics of the spread. Holocene pollen diagrams with independent dating control were collected from Fennoscandia and adjacent areas to compare the timing of selected features of the <i>Picea abies</i> pollen curve. Computer models were used to test possible scenarios for the spread and <i>Picea abies</i> population expansion. </p><p><i>Picea abies</i> entered the Scandinavian peninsula from the east at different times and by different pathways. Early-Holocene outposts can be discerned in pollen records from northwest Russia, eastern and northeastern Finland for the time before 9000 cal. BP. Pollen records from Sweden and Norway indicate small <i>Picea abies</i> populations after 8000 cal. BP. The mid to late-Holocene spread, which superficially resembles a front-like pattern, may in fact represent a wave of expanding populations. Disturbance through fire and human activity did not significantly influence the pattern of the spread. Changing climate parameters, slow adaptation and gene flow through seeds and pollen have to be considered as possible explanations for the late spread of the tree. Population dynamics and propagule pressure are likely to be important factors that shaped the spread of <i>Picea abies</i>.</p>
2

The Holocene Spread of Spruce in Scandinavia

Giesecke, Thomas January 2004 (has links)
The Holocene spread of Picea abies in Scandinavia provides an excellent opportunity for detailed study of the dynamics of tree spread and population expansion. Early- and mid-Holocene macrofossil evidence for the presence of Picea abies in Scandinavia has questioned traditional interpretations of the timing and direction of its spread. This study aims to determine the pattern of the spread of Picea abies in Scandinavia from pollen and other data, to evaluate the significance of possible early outpost populations and to deduce possible factors that influenced the spread and population expansion of Picea abies in Scandinavia. Palaeoecological investigations were carried out on the sediments of four small lakes in central Sweden to gain detailed insight into the dynamics of the spread. Holocene pollen diagrams with independent dating control were collected from Fennoscandia and adjacent areas to compare the timing of selected features of the Picea abies pollen curve. Computer models were used to test possible scenarios for the spread and Picea abies population expansion. Picea abies entered the Scandinavian peninsula from the east at different times and by different pathways. Early-Holocene outposts can be discerned in pollen records from northwest Russia, eastern and northeastern Finland for the time before 9000 cal. BP. Pollen records from Sweden and Norway indicate small Picea abies populations after 8000 cal. BP. The mid to late-Holocene spread, which superficially resembles a front-like pattern, may in fact represent a wave of expanding populations. Disturbance through fire and human activity did not significantly influence the pattern of the spread. Changing climate parameters, slow adaptation and gene flow through seeds and pollen have to be considered as possible explanations for the late spread of the tree. Population dynamics and propagule pressure are likely to be important factors that shaped the spread of Picea abies.
3

Relativní pylové produktivity hlavních středoevropských dřevin v modelovém území Křivoklátsko / Relative pollen productivity estimates of main tree taxa of Central Europe in model area Křivoklátsko.

Fořtová, Pavlína January 2016 (has links)
Pollen spectra found in sediments enable the research of quantitative changes in vegetation composition in the past. The fact is conditioned upon assumption of unchangeable linear relationship between abundance of pollen and the vegetation that is responsible for its production. Calibration of this relationship is experimentally performed on modern pollen samples and current vegetation. Relative pollen produktivity etimates (PPEs) represents basic parameters for the conversion of proportional pollen data into the vegetational ones. Their knowledge is indispensible for the quantitative vegetation restoration and for the simulating of the processes of pollen dispersion and deposition. PPEs estimation is performed by ERV model which corrects nonlinear relationship of proportional pollen and vegetation data back to the linear relationship. ERV model estimates PPEs values together with values of pollen background by maximum likelihood method. Knowledge of PPEs of main tree species is crucial for the understanding of processes which takes place on the level of landscape scale. Model area of Křivoklátsko was selected due to its high forest coverage and tree diversity. Twenty-four localities were chosen upon stratified random selection. Moss polsters containing modern pollen loading were taken and detailed...

Page generated in 0.0478 seconds