• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scaling of Animal Communities: From Local and Landscape to Global Processes

Udy, Kristy 11 July 2017 (has links)
No description available.
2

Plant–Pollinator Network Structural Properties Differentially Affect Pollen Transfer Dynamics and Pollination Success

Arceo-Gómez, Gerardo, Barker, Daniel, Stanley, Amber, Watson, Travis, Daniels, Jesse 01 April 2020 (has links)
Plant–pollinator network studies have uncovered important generalities in the structure of these communities, rapidly advancing our understanding of the underlying drivers of such a structure. In spite of this, however, it is still unclear how changes in structural network properties influence overall plant pollination success. One key limitation is the lack of information on the relationship between network structural properties and aspects of pollination and plant reproductive success. Here, we estimate four plant species network structural metrics (interaction strength, weighted degree, closeness centrality, and specialization level), commonly used to describe their importance within plant–pollinator networks, at two different sites, and evaluate their effects on pollen deposition and pollen tube success. We found a positive effect of plant–pollinator specialization and a negative effect of closeness centrality on heterospecific pollen load size. We also found a marginal negative effect of closeness centrality on pollen tube success. Our results suggest that increasing plant–pollinator specialization within nested communities (pollinated by one or very few generalist insect species) may result in high levels of heterospecific pollen transfer. Furthermore, the differential effects of plant–pollinator network metrics on pollination success (pollen receipt and pollen tube success), highlight the need to integrate quantity (e.g. visitation rate) and quality (e.g. pollen delivery) aspects of pollination to achieve a more mechanistic understanding of the relationship between plant–pollinator network structure and function. Such knowledge is key to evaluate the resilience and stability of plant–pollinator communities and the services they provide in the face of increasing human disturbances.
3

Patterns and process : biodiversity and ecosystem function response to changes in the arable landscape

Berkley, Nicholas Alexander James January 2018 (has links)
Land use change is a major driver of species loss worldwide, the extent and intensity of agricultural land use poses particular pressures for biodiversity and the ecosystem services it provides. In recent years, agroecosystems have seen the introduction of 2nd generation bioenergy crops in order to tackle anthropogenic climate change, providing a renewable alternative to fossil fuels. In this thesis I study the impact of cultivating two commercial perennial energy crops (PECs), Miscanthus x giganteus and willow short-rotation coppice, when compared to the cereal crops they replace. I investigate processes relevant to the provisioning of pollination and decomposition services and explore patterns of soil element bioaccessibility alongside analyses of the similarity and diversity of soil bacterial communities. When compared to cereals, I find a consistent increase in pollinator (hoverfly, bumblebee and butterfly/moth) wildflower visitation in the margins of willow but not Miscanthus. In Miscanthus, opposing trends arose for different pollinator taxa: butterflies/moths were more frequent flower visitors in Miscanthus margins than cereal margins, while hoverfly flower visits were most frequent in cereal margins. Furthermore, the availability of margin wildflowers was enhanced in willow but not Miscanthus and the seed set of margin phytometers was similar between Miscanthus and cereals. Cultivation of willow, in particular, may therefore yield local conservation benefits for both wildflowers and pollinators. However, there was no evidence for enhancement of pollinator activity in cereals adjacent to either PEC, indicating that the strategic cultivation of these crops is unlikely to enhance pollinator service provision in the wider agri-environment. For investigated soil elements, bioaccessibility in PECs did not differ significantly to cereal controls, and denaturing gradient gel electrophoresis (DGGE) revealed no difference in the diversity of bacterial communities. Similarly, DGGE fingerprint patterns did not indicate the development of crop specific assemblages, demonstrating that the mobility of soil elements and structure of bacterial communities were principally determined by factors other than the identity of the crop cultivated. Investigation of meso-microfaunal decomposition rates in Miscanthus using litter bags demonstrated an impact on decomposition processes, with a significant increase in winter decomposition rates in the PEC when compared to cereals.
4

Pollen on Stigmas as Proxies of Pollinator Competition and Facilitation: Complexities, Caveats and Future Directions

Ashman, Tia Lynn, Alonso, Conchita, Parra-Tabla, Victor, Arceo-Gómez, Gerardo 01 June 2020 (has links)
Background: Pollen transfer via animals is necessary for reproduction by ~80 % of flowering plants, and most of these plants live in multispecies communities where they can share pollinators. While diffuse plant-pollinator interactions are increasingly recognized as the rule rather than the exception, their fitness consequences cannot be deduced from flower visitation alone, so other proxies, functionally closer to seed production and amenable for use in a broad variety of diverse communities, are necessary. Scope: We conceptually summarize how the study of pollen on stigmas of spent flowers can reflect key drivers and functional aspects of the plant-pollinator interaction (e.g. competition, facilitation or commensalism). We critically evaluate how variable visitation rates and other factors (pollinator pool and floral avoidance) can give rise to different relationships between heterospecific pollen and (1) conspecific pollen on the stigma and (2) conspecific tubes/grain in the style, revealing the complexity of potential interpretations. We advise on best practices for using these proxies, noting the assumptions and caveats involved in their use, and explicate what additional data are required to verify interpretation of given patterns. Conclusions: We conclude that characterizing pollen on stigmas of spent flowers provides an attainable indirect measure of pollination interactions, but given the complex processes of pollen transfer that generate patterns of conspecific-heterospecific pollen on stigmas these cannot alone determine whether competition or facilitation are the underlying drivers. Thus, functional tests are also needed to validate these hypotheses.

Page generated in 0.0466 seconds