• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EXAMINATION OF THE AMMONIA - SULFUR DIOXIDE - WATER SYSTEM USING FTIR SPECTROSCOPY

SPRIGGS, LAURA S. 11 June 2002 (has links)
No description available.
2

Removal of formaldehyde from indoor air : enhancing surface-mediated reactions on activated carbon

Carter, Ellison Milne 22 September 2014 (has links)
Formaldehyde is a ubiquitous and hazardous indoor air pollutant and reducing concentrations in indoor environments is a public health priority. The goals of this doctoral work were to advance analytical methods for continuous monitoring of formaldehyde at very low concentrations (sub-20 ppb[subscript v]) and to improve fundamental, mechanistic understanding of how structural and chemical properties of activated carbon influence removal of formaldehyde from indoor environments. To achieve these goals, emerging sensor-based technology was evaluated for its ability to detect and quantify ppb[subscript v]-level formaldehyde concentrations on a continuous basis at relative humidity levels characteristic of residential indoor environments. Also, a combination of spectroscopic and selective titration techniques was employed to characterize molecular-level structural and chemical properties of traditional and chemically treated granular activated carbon (GAC). In addition to selecting two different commercially available GACs for study, design and preparation of a laboratory-prepared, chemically treated GAC was pursued to create nitrogen-doped GAC with desirable surface chemical properties. Performance of all GACs was evaluated with respect to formaldehyde removal through a series of packed bed column studies. With respect to continuous formaldehyde monitoring, a method detection limit for emerging sensor technology was determined to be approximately 2 ppb[subscript v], and for relative humidity levels characteristic of indoor environments (> 40%), quantitative, continuous formaldehyde measurements less than 10 ppb[subscript v] were robust. The two commercially available GACs tested were both capable of removing formaldehyde; however, the GAC with greater density of basic surface functional groups and greater electron-donating potential (Centaur) removed twice as much formaldehyde (on a GAC mass basis) as the less basic GAC (BPL). A laboratory-prepared GAC (BPL-N) was successfully created to contain pyridinic and pyrrolic nitrogen, which was associated with increased surface density of basic functional groups, as well as with increased electron-donating potential. BPL-N exhibited better removal capacity for formaldehyde than BPL and Centaur. Furthermore, packed bed column studies of BPL-N and BPL formaldehyde removal performance yielded evidence to support the hypothesis that electron-donating potential, especially nitrogen functional groups at the BPL-N surface, promote catalytic removal of gas-phase formaldehyde via oxidation. / text
3

Fixed Bed Adsorption Studies of the Simultaneous Removal of Mercury and Nitrogen Oxides

Hemmer, Hailey A. 11 October 2016 (has links)
No description available.

Page generated in 0.0502 seconds