• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microwave-assisted Simultaneous Novel Synthesis Of Poly(dibromophenylene Oxide)s, Poly(diiodophenylene Oxide)s (p), Conducting(cp) And/or Crosslinked (clp) And/or Radical Ion Polymers (rip)

Celik, Guler (bayrakli) 01 March 2007 (has links) (PDF)
Microwave-assisted novel synthesis of poly(dibromophenylene oxide) or poly(diiodophenylene oxide) (P), conducting polymer (CP) and/or crosslinked polymer (CLP) and/or radical ion polymer (RIP) were achieved simultaneously from lithium, sodium or potassium 2,4,6-bromophenolate or sodium 2,4,6-iodophenolate in a very short time interval. Polymerizations were carried out by constant microwave energy with different time intervals varying from 1 to 20 min / or at constant time intervals with variation of microwave energy from 70 to 900 watt / or varying the water content from 0.5 to 5 ml at constant time intervals and microwave energy. Poly(dihalophenylene oxide) and radical ion polymers were characterized by FTIR (Fourier Transform Infrared), 1H-NMR (Proton Nuclear Magnetic Resonance), 13C-NMR (Carbon-13 Nuclear Magnetic Resonance), TGA/ FTIR (Thermal Gravimetric Analysis / Fourier Transform Infrared), DSC (Differential Scanning Calorimeter), SEM (Scanning Electron Microscope), ESR (Electron Spin Resonance), GPC (Gel Permeation Chromatography), UV-Vis (UV-Visible Spectroscopy), Light Scattering and Elemental Analysis. Conducting and crosslinked polymers were characterized by FTIR, TGA/ FTIR, DSC, SEM, ESR, XRD (Powder Diffraction X-Ray) and Elemental Analysis. The effects of heating time, microwave energy and water content on the percent conversion and the polymer synthesis were also investigated.
2

Synthesis And Characterization Of Poly(dihalophenylene Oxide)s And Its Derivatives From Diammine Bis(trihalophenolato) Cu(ii) Complexes

Sonsuz, Muammer 01 April 2003 (has links) (PDF)
ABSTRACT SYNTHESIS AND CHARACTERIZATION OF POLY(DIHALOPHENYLENE OXIDE)S AND ITS DERIVATIVES FROM DIAMMINE BIS(TRIHALOPHENOLATO) Cu(II) COMPLEXES Sonsuz, Muammer M.S., Department of Chemistry Supervisor: Assoc. Prof. Dr. G&uuml / ls&uuml / n G&ouml / kaga&ccedil / Co-Supervisor: Prof. Dr. Duygu Kisak&uuml / rek September 2004, 62 pages In this study, synthesis and characterization of poly(dihalophenylene oxide)s were done by thermal decomposition of diamminebis(trichlorophenolato) copper(II) and diamminebis(tribromophenolato) Cu(II) complexes in solid state. 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and ammonia were used as ligands in the complex syntheses. The complexes were characterized by means of X-ray diffraction, FTIR, DSC, mass spectroscopy, magnetic susceptibility and C, H, N elemental analyses. Synthesized complexes were decomposed thermally in solid state for the production of poly(dihalophenylene oxide)s. Polymerizations were carried out at two different conditions. In the first condition, the decomposition time was kept constant at 3 hours and temperature was varied for each sample to observe the effect of temperature on decomposition. In the second condition, the decomposition temperature was kept constant at maximum conversion temperature and the period of time was varied from 3 hours to 48 hours in order to define the effect of time on the decomposition. Synthesized polymers were characterized by FTIR, 1H-NMR, 13C-NMR, DSC, SEM, FAAS and viscometric measurements. At the end of the study, it was observed that, the percent conversion and the structure of the polymeric product depend on polymerization condition and the type of the starting complex.

Page generated in 0.0873 seconds