• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Engineering of Conjugated Polymers for Sensor Applications

Vetrichelvan, Muthalagu, Valiyaveettil, Suresh 01 1900 (has links)
In recent years, the application of fluorescent conjugated polymers for sensing chemical and biological analytes has received much attention from many researchers. A promising development in this direction was the fabrication of conducting polymer-based sensors for the detection of metal ions, small organic molecules and biomolecules. Herein, we have designed, synthesized and studied a series of copolymers containing alternate phenylene and 2,5- or 2,6-substituted pyridine rings. The basic N-atom of the pyridine ring and the adjacent –OH group from the phenyl ring provide binding sites for metal ions. Another series of water-soluble conjugated polymers with propoxy sulfonate side chains are investigated for biosensor applications. Significant quenching of the polymer fluorescence upon addition of viologen derivatives was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers can be useful in the application of metal and biological sensors. / Singapore-MIT Alliance (SMA)
2

Properties Of The Correlated Electronic States In Conjugated Organic Molecules, Polymers And Metal-Halogen Chains

Anusooya, Y 11 1900 (has links) (PDF)
No description available.
3

Molecular Engineering of Amphiphilic Pyridine Incorporated Conjugated Polymers for Metal Ion Sensors

Vetrichelvan, Muthalagu, Valiyaveettil, Suresh 01 1900 (has links)
Recent developments in the synthesis and structure-property investigation studies of conjugated polymers have led to the design of novel polymeric materials with tailored properties for advanced technological applications. A promising development in this direction involves the fabrication of conducting polymer based sensors for the detection of metal ions and small organic molecules. Herein, we designed, synthesized and studied a series of amphiphilic copolymers containing alternate phenylene and 2,5- or 2,6- or 3,5-substituted pyridine rings. The basic N-atom of the pyridine ring and the adjacent –OH group from the phenyl ring provide binding sites for metal ions. Thermal properties, and optical properties of polymers in presence of acid, base and metal ions are investigated. A few target polymers showed high sensitivities for metal ions in solution. / Singapore-MIT Alliance (SMA)
4

Strength of hydroentangled fabrics manufactured from photo-irradiated poly para-phenylene terephthalamide (PPTA) fibres

Wright, T.M., Carr, C.M., Grant, Colin A., Lilladhar, V., Russell, S.J. 30 August 2014 (has links)
No / Photo-irradiation of poly para-phenylene terephthalamide (PPTA) fibre is normally associated with deterioration of physical properties. Nonwoven fabrics produced from 100% photo-irradiated PPTA fibres might therefore be expected to yield fabrics with poorer mechanical properties compared to those produced from non-irradiated fibres. To test this hypothesis, the bursting strength of hydroentangled fabrics manufactured from photo-irradiated PPTA fibres was explored. Prior to fabric manufacture, virgin PPTA staple fibres were photo-irradiated under controlled lighting conditions (xenon short arc lamp with a luminous flux of 13,000 lm) for 0, 5, 10, 20, 40, 60 and 100 h. The photo-irradiated fibres were then hydroentangled to produce nonwoven fabrics. Photo-irradiation exposure of PPTA fibre up to 30 MJ m 2 was not found to be detrimental to fabric bursting strength and at irradiation energies of 5e10 MJ m 2 a small, but statistically significant increase in fabric bursting strength was observed compared to fabrics manufactured from non-irradiated fibre. This may be linked to a change in the surface and skin properties of the PPTA photo-irradiated fibres identified by atomic force microscopy (AFM) following photoirradiation.
5

Hyperbranched conjugated polymers: an investigation into the synthesis, properties and postfunctionalization of hyperbranched poly(phenylene vinylene-phenylene ethynylene)s

Kub, Christopher 07 July 2010 (has links)
There are two general ways to introduce functionalities into a polymeric structure: functionalization of the monomeric units before polymerization and postfunctionalization of the preformed polymer. Building libraries of polymers with different functionalities can be completed with significantly less effort by the second method, as each postfunctionalization of a single batch of polymeric backbone can involve as little as one synthetic step. One method of building a polymeric backbone for postfunctionalization involves the synthesis of hyperbranched conjugated polymers (HCPs) from AB2 monomeric units. A polymer formed from n AB2 monomeric units should contain n reactive B groups, which act as sites of functionalization. Utilizing this principle, two different hyperbranched poly(phenylene vinylene-phenylene ethynylene) scaffolds were synthesized and studied in both their inherent properties and functionalization. The first HCP synthesized was compared against a monomeric cruciform model and a linear polymer with a similar structure. The hyperbranched polymer has red-shifted absorption and emission in comparison to the cruciform model and linear polymer. The HCP quenches paraquat more efficiently than the linear polymer by a factor of about two, suggesting a greater rate of energy transfer. The functionalization of HCPs was studied; iodine groups decorating the HCPs were replaced with terminal alkynes by Pd-catalyzed coupling, providing a library of 24 differently functionalized HCPs. Elemental analyses of the postfunctionalized polymers show nearly complete substitution of the iodine groups. The postfunctionalized polymers show increased fluorescence compared to the original iodine decorated polymers, due to the loss of the heavy atom effect inducing iodine groups. The emissions of the postfunctionalized polymers in solution show a strong dependence on the groups attached to the conjugated structures, with emission maxima ranging from 505 nm to 602 nm; quantum yields range from 0.7% to 25%. Solid-state emission studies show stronger and more red-shifted spectra compared to emissions observed in solution.
6

Electronic and optical properties of conducting polymers from quantum mechanical computations

Mirsakiyeva, Amina January 2017 (has links)
Conductive polymers are also known as "organic metals" due to their semiconducting properties. They are found in a wide range of applications in the field of organic electronics. However, the growing number of experimental works is not widely supported with theoretical calculations. Hence, the field of conductive polymers is experiencing lack of understanding of mechanisms occurring in the polymers. In this PhD thesis, the aim is to increase understanding of conductive polymers by performing theoretical calculations.        The polymers poly(3,4-ethylenedioxythiophene) (PEDOT) together with its selenium (PEDOS) and tellurium (PEDOTe) derivatives, poly(p-phenylene) (PPP) and naphthobischalcogenadiazoles (NXz) were studied. Several computational methods were applied for analysis of mentioned structures, including density functional theory (DFT), tight-binding modelling (TB), and Car-Parrinello molecular dynamics (CPMD) calculations. The combination of CPMD and DFT calculations was applied to investigate the PEDOT, PEDOS and PEDOTe. The polymers were studied using four different functionals in order to investigate the full picture of structural changes, electronic and optical properties. Temperature effects were studied using molecular dynamics simulations. Wide statistics for structural and molecular orbitals analysis were collected.         The TB method was employed for PPP. The formation and motion of the excitations, polarons and bipolarons, along the polymer backbone was investigated in presence of electric and magnetic fields. The influence of non-magnetic and magnetic impurities was determined.        The extended π-conjugated structures of NXz were computed using B3LYP and ωB97XD functionals in combination with the 6-31+G(d) basis set. Here, the structural changes caused by polaron formation were analyzed. The combined analysis of densities of states and absorption spectra was used for understanding of the charge transition. / <p>QC 20170928</p>

Page generated in 0.0563 seconds