Spelling suggestions: "subject:"caprolactone) (PCL)""
1 |
Improved cell infiltration of electrospun nanofiber mats for layered tissue constructsMahjour, S.B., Sefat, Farshid, Polunin, Y., Wang, L., Wang, H. 04 February 2016 (has links)
Yes / While achieving the spatial organization of cells within 3D assembled nanofiber/cell constructs via nanofiber-enabled cell layering, the small sizes of inter-fiber pores of the electrospun nanofiber mats could significantly limit cell penetration across the layers for rapid formation of an integrated tissue construct. To address this challenge, efforts were made to improve cell-infiltration of electrospun nanofiber mats by modulating the density distribution and spatial organization of the fibers during electrospinning. Collection of collagen-containing electrospun nanofibers (300–600 nm in diameter) onto the surface of a stainless steel metal mesh (1 mm × 1 mm in mesh size) led to the periodic alternation of fiber density from densely packed to loosely arranged distribution within the same mat, in which the densely packed fibers maintained the structural integrity while the region of loose fibers allowed for cell penetration. Along with improved cell infiltration, the distinct fiber organization between dense and loose fiber regions also induced different morphology of fibroblasts (stellate vs. elongated spindle-like). Assembly of cell-seeded nanofiber sheets into 3D constructs with such periodically organized nanofiber mats further demonstrated their advantages in improving cell penetration across layers in comparison to either random or aligned nanofiber mats. Taken together, modulation of nanofiber density to enlarge the pore size is effective to improve cell infiltration through electrospun mats for better tissue formation. / NSF-IIP. Grant Numbers: 1338958, 1346430; NSF-DMR. Grant Number: 1508511; NSF-CBET. Grant Number: 1033742; and NIAMS. Grant Number: 1R21 AR056416
|
2 |
Tissue engineering techniques to regenerate articular cartilage using polymeric scaffoldsPérez Olmedilla, Marcos 18 December 2015 (has links)
[EN] Articular cartilage is a tissue that consists of chondrocytes surrounded by a dense extracellular matrix (ECM). The ECM is mainly composed of type II collagen and proteoglycans. The main function of articular cartilage is to provide a lubricated surface for articulation.
Articular cartilage damage is common and may lead to osteoarthritis. Articular cartilage does not have blood vessels, nerves or lymphatic vessels and therefore has limited capacity for intrinsic healing and repair.
Tissue engineering (TE) is a powerful approach for healing degenerated cartilage. TE uses three-dimensional (3D) scaffolds as cellular culture supports. The scaffold provides a structure that facilitates chondrocyte adhesion and expansion while maintaining a chondrocytic phenotype and limiting dedifferentiation, which is a problem in two-dimensional (2D) systems.
Cell attachment to the scaffolds depends on the physical and chemical characteristics of their surface (morphology, rigidity, equilibrium water content, surface tension, hydrophilicity, presence of electric charges).
The primary aim of this thesis was to study the influence of different kinds of biomaterials on the response of chondrocytes to in vitro culture. 3D scaffold constructs must have an interconnected porous structure in order to allow cell development through the network, to maintain their differentiated function, as well as to allow the entry and exit of nutrients and metabolic waste removal. Therefore, the effect of the hydrophilicity and pore architecture of the scaffolds was studied.
A series of polymer and copolymer networks with varying hydrophilicity was synthesised and biologically tested in monolayer culture. Cell viability, proliferation and aggrecan expression were quantified. When human chondrocytes were cultured on polymer substrates in which the hydrophilic groups were homogeneously distributed, adhesion, proliferation and viability decreased with the content of hydrophilic groups. Nevertheless, copolymers in which hydrophilic and hydrophobic domains alternate showed better results than the corresponding homopolymers.
Biostable and biodegradable scaffolds with different hydrophilicity and porosity were synthesised using a template of sintered microspheres of controlled size. This technique allows the interconnectivity between pores and their size to be controlled. Periodic and regular pore architectures and reproducible structures were obtained. The mechanical behaviour of the porous samples was significantly different from that of the bulk material of the same composition. Cells fully colonised the scaffolds when the pores' size and their interconnection were sufficiently large.
Another objective was to assess the chondrogenic redifferentiation in a biodegradable 3D scaffold of polycaprolactone (PCL) of human autologous chondrocytes previously expanded in monolayer. This study demonstrated that chondrocytes cultured in PCL scaffolds without fetal bovine serum (FBS) efficiently redifferentiated, expressing a chondrocytic phenotype characterised by their ability to synthesise cartilage-specific ECM proteins.
The influence that pore connectivity and hydrophilicity of caprolactone-based scaffolds has on the chondrocyte adhesion to the pore walls, proliferation and composition of the ECM produced was studied. The number of cells inside polycaprolactone scaffolds increased as porosity was increased. A minimum of around 70% porosity was necessary for this scaffold architecture to allow seeding and viability of the cells within. The results suggested that some of the cells inside the scaffold adhered to the pore walls and kept the dedifferentiated phenotype, while others redifferentiated.
In conclusion, the findings of this thesis provide valuable insight into the field of cartilage regeneration using TE techniques. The studies carried out shed light on the right composition, porosity and hydrophilicity of the scaffolds to be used for optimal cartilage production. / [ES] El cartílago articular es un tejido compuesto por condrocitos rodeados por una densa matriz extracelular (MEC). La MEC se compone principalmente de colágeno tipo II y de proteoglicanos. La función principal del cartílago articular es proporcionar una superficie lubricada para las articulaciones.
Las lesiones en el cartílago articular son comunes y pueden derivar a osteoartritis. El cartílago articular no tiene vasos sanguíneos, nervios o vasos linfáticos y, por tanto, tiene una capacidad limitada de auto-reparación.
La ingeniería tisular (IT) es un área prometedora en la regeneración de cartílago. En la IT se utilizan "andamiajes" (scaffolds) tridimensionales (3D) como soportes para el cultivo celular y tisular. Los scaffolds proporcionan una estructura que facilita la adhesión y la expansión de los condrocitos, manteniendo un fenotipo condrocítico limitando su desdiferenciación; que es el mayor problema en los sistemas bidimensionales (2D).
La adhesión celular a los scaffolds depende de las características físicas y químicas de su superficie (morfología, rigidez, contenido de agua en equilibrio, tensión superficial, hidrofilicidad, presencia de cargas eléctricas).
El objetivo general de esta tesis fue estudiar la influencia de diferentes tipos de biomateriales en la respuesta de los condrocitos en cultivo in vitro.
Los scaffolds deben tener una estructura porosa interconectada para permitir el desarrollo celular a través de toda la estructura 3D, potenciando que los condrocitos mantengan su fenotipo, así como permitiendo entrada de nutrientes y eliminación de desechos metabólicos.
Se estudió el efecto de la hidrofilicidad y de la arquitectura de poro. Se cuantificó la viabilidad celular, la proliferación y la expresión de agrecano. Cuando los condrocitos humanos se cultivaron en sustratos poliméricos donde los grupos hidrófilos se distribuyeron de manera homogénea, la adhesión, la proliferación y la viabilidad disminuyó con el contenido de grupos hidrófilo. Sin embargo, los copolímeros en los que los dominios hidrófilos e hidrófobos se alternaban mostraron mejores resultados que los homopolímeros correspondientes.
Se sintetizaron series de scaffolds bioestables y series biodegradables con diferente hidrofilicidad y porosidad utilizando plantillas de microesferas sinterizadas. Se obtuvieron arquitecturas de poros regulares y reproducibles. Las células colonizaron el scaffold en su totalidad cuando los poros y la interconexión entre ellos era lo suficientemente grande.
Se evaluó la rediferenciación condrogénica de condrocitos autólogos humanos, previamente expandidos en monocapa, sembrados en un scaffold biodegradable de policaprolactona (PCL). Se demostró que los condrocitos cultivados en scaffolds de PCL con medio sin suero bovino fetal (FBS), se rediferenciaban de manera eficiente; expresando un fenotipo condrocítico, caracterizado por su capacidad de sintetizar proteínas de la MEC específicas de cartílago hialino.
Se estudió la influencia de la hidrofilicidad y la conectividad de los poros de los scaffolds de caprolactona sobre la adhesión de los condrocitos a las paredes de los poros, su capacidad proliferativa y la composición de MEC sintetizada. Se observó que un mínimo de 70% de porosidad era necesario para permitir la siembra de los condrocitos en el scaffold y su posterior viabilidad. El número de células aumentaba a medida que aumentaba la porosidad del scaffold. Los resultados sugieren que parte de las células que se adherían a las paredes internas de los poros mantenían el fenotipo desdiferenciado de condrocitos cultivados en monocapa, mientras que otros se rediferenciaban.
En conclusión, los resultados de esta tesis aportan un avance en el campo de la regeneración de cartílago articular utilizando técnicas de IT. Los estudios realizados proporcionan directrices sobre la composición, la porosidad y la hidrofilicidad más adecuada para l / [CA] El cartílag articular és un teixit format per condròcits envoltats per una densa matriu extracel·lular (MEC). La MEC es compon principalment de col·lagen tipus II i de proteoglicans. La funció principal del cartílag articular és proporcionar una superfície lubricada a les articulacions.
Les lesions en el cartílag articular són comuns i poden derivar en osteoartritis. El cartílag articular no té vasos sanguinis, nervis ni vasos limfàtics i, per tant, té una capacitat limitada d'auto-reparació.
L'enginyeria tissular (IT) és una àrea prometedora en la regeneració del cartílag. A la IT s'utilitzen "bastiments" (scaffolds) tridimensionals (3D) com a suports per al cultiu cel·lular i tissular. Els scaffolds proporcionen una estructura que facilita l'adhesió i l'expansió dels condròcits, mantenint un fenotip condrocític limitant la seua desdiferenciació; que és el major problema en els sistemes bidimensionals (2D).
L'adhesió cel·lular als scaffolds depèn de les característiques físiques i químiques de la superfície (morfologia, rigidesa, contingut d'aigua en equilibri, tensió superficial, hidrofilicitat i presència de càrregues elèctriques).
L'objectiu general d'aquesta tesi va ser estudiar la influència de diferents tipus de biomaterials en la resposta dels condròcits en cultiu in vitro.
Els scaffolds han de tindre una estructura porosa interconnectada per a permetre el desenvolupament cel·lular a través de tota l'estructura 3D, potenciant que els condròcits mantinguen el seu fenotip així com permetent l'entrada de nutrients i l'eliminació de productes metabòlics.
S'ha estudiat l'efecte de la hidrofilicitat i de l'arquitectura de porus dels scaffolds. Es va quantificar la viabilitat cel·lular, la proliferació i l'expressió de agrecà. Quan els condròcits humans es van cultivar en substrats polimèrics en els quals els grups hidròfils es van distribuir de manera homogènia, l'adhesió, la proliferació i la viabilitat van disminuir amb el contingut de grups hidròfils. No obstant això, els copolímers en els quals els dominis hidròfils i hidròfobs s'alternaven van mostrar millors resultats que els homopolímers corresponents.
Es van sintetitzar sèries de scaffolds bioestables i sèries biodegradables amb diferent hidrofilicitat i porositat utilitzant plantilles de microesferes sinteritzades. Es van obtindre arquitectures de porus regulars i reproduïbles. Les cèl·lules van colonitzar el scaffold en la seua totalitat quan els porus i la interconnexió entre ells era suficientment gran.
Es van avaluar la rediferenciació condrogènica de condròcits autòlegs humans, prèviament expandits en monocapa, en un scaffold biodegradable de policaprolactona (PCL). Es va demostrar que els condròcits cultivats en scaffolds de PCL sense sèrum boví fetal (FBS) es rediferenciaven de manera eficient, expressant un fenotip condrocític caracteritzat per la seua capacitat de sintetitzar proteïnes de la MEC específiques de cartílag hialí.
També es va estudiar la influència de la hidrofilicitat i la connectivitat dels porus dels scaffolds de caprolactona sobre l'adhesió dels condròcits a les parets dels porus, la seua capacitat proliferativa i la composició de MEC sintetitzada. Es va observar que un mínim del 70% de porositat sembla ser necessari per permetre la sembra dels condròcits i la seua posterior viabilitat en el scaffold. El nombre de cèl·lules augmentava a mesura que augmentava la porositat del scaffold. Els resultats suggereixen que part de les cèl·lules que s'adherien a les parets internes dels porus mantenien el fenotip desdiferenciat de condròcits cultivats en monocapa, mentre que altres es rediferenciaven.
En conclusió, els resultats d'aquesta tesi proporcionen informació valuosa en el camp de la regeneració de cartílag utilitzant tècniques d'IT. Els estudis realitzats proporcionen directrius sobre la composició, la porositat i la hidrofilicitat m / Pérez Olmedilla, M. (2015). Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58987
|
3 |
Fabrication Characterisation and Optimisation of Electrospun Scaffolds for Ligament Tissue Reconstruction. The Development of an Anterior Cruciate Ligament (ACL) Analogue using Electrospun PCL, PVA Hydrogel and Polyester SuturesAgbabiaka, Oluwadamilola A. January 2022 (has links)
Year 2019, football, rugby, netball and skiing had most occurring ACL injuries, listed by United Kingdom National Ligament Report (NLR). The standard procedure treatment of complete laceration of the ACL, is performed by tissue autograft implantation designed from a patellar tendon, for replacement of damaged tissue using orthopaedic surgery. The aim of this thesis is to design and fabricate an ACL graft, attempting to mimic the natural ACL, for the purpose of tissue reconstruction. The desired graft analogues exhibited properties imitating native connective tissue, reducing pain through drug delivery with great biocompatibility and enhance suture mechanical strength. Various biomaterials were implemented into this study, utilising strategies; polymer solution fabrication, electrospinning, hydrogel synthesis, mechanical braiding and graft assembly to fabricate an ACL graft. The polymeric material poly (E- caprolactone) (PCL) was researched, utilising its ability to fabricate scaffolds. Results showed, three analogue ACL grafts (Braided PCL-BP, Braided PCL + Hydrogel-BPH & Braided PCL + Sutures-BPS) created utilising the properties of braiding, hydrogels and sutures, ultimately improving the versatility of electrospinning for tissue engineering and reconstruction. Graft analogues were tested and compared against patellar tendons producing similar tensile properties. Poly vinyl alcohol (PVA) hydrogels successfully held ibuprofen, revealing drug delivery characteristics, polyester threads improved mechanical properties of electrospun grafts and dry degradation showed that PCL did not lose significant mass over two months. Conclusion, tensile strength of patella tendon was 395x, 790x & 56x of analogue grafts (BP, BPH & BPS) respectively, having potential for improvement of tensile parameters for ligament reconstruction.
|
4 |
Développement de biomatériaux poreux pour la régénération osseuse : Biomatériaux biphasiques à base de phosphate tricalcique béta (β-TCP) / Development of porous biomaterials for bone regenerationArbez, Baptiste 17 December 2018 (has links)
Avec plus de 2 millions d’interventions chirurgicales par an dans le monde, les actes de chirurgie osseuse sont les plus fréquents, ce qui pousse les entreprises du secteur des biomatériaux pour la régénération osseuse à investir massivement pour sans cesse améliorer leurs produits. Cette thèse est issue d’un contrat CIFRE effectué avec l’entreprise Kasios afin de l’aider dans le développement de céramiques et polymères poreux principalement pour des applications en chirurgie maxillo-faciale. Les travaux réalisés s’articulent autour du développement de biomatériaux biphasiques à base de phosphate tricalcique béta (β-TCP). En premier lieu, des microfibres de polycaprolactone (PCL) incorporant des particules élémentaires de β-TCP ont été fabriquées par électrospinning. Les principales applications des fibres concernent la régénération osseuse guidée pour la préservation alvéolaire ou les opérations de relevés de sinus. L’électrospinning des fibres a utilisé des solvants ne présentant pas de toxicité aiguë. Les fibres ont formé des membranes manipulables qui peuvent être facilement découpées et suturées même en environnement humide. Les études in vitro n’ont révélé aucune cytotoxicité et les membranes ont permis la prolifération de cellules ostéoblastiques. La seconde étude a permis la fabrication d’éponges de gélatine et d’acide hyaluronique saturées ou recouvertes en surface de granules de β-TCP pour le comblement alvéolaire. Les éponges étaient facilement façonnables pour correspondre à l’alvéole du patient. Le chirurgien pourrait alors bénéficier de la nature biphasique du dispositif médical afin de faciliter l’implantation et éviter la manipulation séparée des éponges et des granules. L’utilisation des éponges permettrait par ailleurs d’assurer un positionnement idéal des granules pour la cicatrisation alvéolaire. La troisième étude, plus fondamentale, porte sur l’interaction des cellules osseuses avec le β-TCP et sa résorption. Des études de biomécanique et de biodégradation ainsi que de biodissolution ont également été réalisées sur des biomatériaux produits par l’entreprise. / With more than 2 million surgeries per year, bone tissue is one of the most concerned tissues and biomaterial companies have developed massive investments to continually improve bone regeneration.This thesis was conducted during a CIFRE contract (a tripartite contract linking a student, a university and acompany) and was done in association with the company Kasios for the development of new porous polymers and ceramics. This thesis was specifically centered in the development of biphasic biomaterials based upon beta tricalcium phosphate (β-TCP). First, polycaprolacton (PCL) microfibers incorporating β-TCP elementary particles were produced using electrospinning. These fibers were developed to provide membranes for guided bone regeneration usable in alveolar preservation and sinus lifting. Electrospinning of the fibers did not require any high toxicity solvent. Our fibers formed membranes that could easily be handled, cut and sutured in dry and wet environment. In vitrocytotoxicity studies confirmed the non-toxic nature of the material and showed the ability of the membranes to encourage survival and proliferation of osteoblastic cells. Secondly, freeze-dried gelatin and hyaluronicacid sponges saturated or embedded with β-TCP granules were developed for alveolar filling. Theses ponges could easily be shaped to fit the patient’s dental socket. The biphasic nature of the sponges could make the implantation easier and faster by avoiding surgeons to handle separately the granules and the sponges. This medical device could also insure a correct and optimal positioning of the granules for the patient healing. Lastly, a fundamental study was conducted on resorption of β-TCP and the interaction between bone cells and the biomaterial. Biomechanical and biodegradation/biodissolution studies were also done on different types of biomaterials produced by the company.
|
5 |
Charakterizace vyfukovaných fólií z měkčeného polylaktidu / Characterization of blowing films from softened polylactideKubíček, Václav January 2020 (has links)
The master's thesis focuses on preparation of blown films from polylactid acid (PLA) which was blended with selected polyesteres – poly(butylene adipate-co-terephtalate) (PBAT), polycaprolactone (PCL) and polybutylene succinate (PBS) – and thermoplastic starch (TPS) in amount of 30% in order to soften PLA films. The influence of the aditives on static and mechanical tensile properties, on structure, morphology and thermal properties of the films was determined and the obtained parameters were compared to properties of films prepared from neat PLA and high density polyethylene (HDPE). The results showed that the additives increased crystalinity of PLA and thus significantly influenced the properties of the films. In contrast to the film from neat PLA, softening in terms of lowering glass transition temperature occured only by adding PBS and TPS, in terms of increasing ductility only by adding PBAT. All PLA films showed nearly constant elastic modulus up to the beginning of glass transition enabling their potential application till 50 °C. Preparation of the film with TPS was problematic and the film showed the worst mechanical properties. Preparation of other films was without any problems. The most promising additive from the tested ones was PBAT which showed comparable mechanical properties as the film from HDPE.
|
6 |
Stabilita systémů pro řízené uvolňování léčiv na bázi plastifikovaného škrobu / Stability of controlled drug release systems based on plasticized starchZhukouskaya, Hanna January 2022 (has links)
The thesis is focused on the research of stability of controlled drug release systems based on a blend of plasticized starch/polycaprolactone (TPS/PCL) that served as a carrier. Antibiotic vancomycin was used as a model drug, and its release from TPS/PCL pellets into aqueous environment was followed by UV-spectroscopy and the obtained time dependences were treated by a simple kinetic model. Moreover, the simultaneous release of starch particles to the surrounding liquid phase was studied by static and dynamic light scattering as well as transmission electron microscopy (TEM) in order to obtain information on the stability of biodegradable matrix and on the structure of the products of the pellet decomposition on a nanoscale level. Key words: vancomycin, starch, drug delivery system, polycaprolactone (PCL), particle release, dynamic light scattering (DLS), static light scattering (SLS)
|
7 |
Fabrication, Characterisation and Optimisation of Biodegradable Scaffolds for Vascular Tissue Engineering Application of PCL and PLGA Electrospun Polymers for Vascular Tissue EngineeringBazgir, Morteza January 2021 (has links)
Annually, about 80,000 people die in the United Kingdom due to myocardial
infarction, congestive heart failure, stroke, or from other diseases related to
blood vessels. The current gold standard treatment for replacing the damaged
blood vessel is by autograft procedure, during which the internal mammary
artery (IMA) graft or saphenous vein graft (SVG) are usually employed.
However, some limitations are associated with this type of treatment, such as
lack of donor site and post-surgery problems that could negatively affect the
patient’s health. Therefore, this present work aims to fabricate a synthetic
blood vessel that mimics the natural arteries and to be used as an alternative
method for blood vessel replacement. Polymeric materials intended to be used
for this purpose must possess several characteristics including: (1) Polymers
must be biocompatible; (2) Biodegradable with adequate degradation rate; (3)
Must maintain its structural integrity throughout intended use; (4) Must have
ideal mechanical properties; and (5) Must encourage and enhance the
proliferation of the cells.
The feasibility of using synthetic biodegradable polymers such as poly (ε-
caprolactone) (PCL) and poly (lactide-co-glycolic acid) (PLGA) for fabricating
tubular vascular grafts was extensively investigated in this work. Many
fundamental experiments were performed to develop porous tissue-
engineered polymeric membranes for vascular graft purposes through
electrospinning technique to achieve the main aim. Electrospinning was
selected since the scaffolds produced by this method usually resemble
structural morphology similar to the extracellular matrix (ECM). Hence, four
6mm in diameter tubular shape vascular grafts PCL only, PLGA only, coaxial
(core-PCL and shell-PLGA), and bilayer (inner layer-PCL and outer layer-PLGA) was designed and fabricated successfully. The structure and properties
of each scaffold membrane were observed by scanning electron microscopy
(SEM), and these scaffolds were fully characterized by Fourier-transform
infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric
analysis (TGA), water contact angle measurements, mechanical tensile test,
as well as cell culture studies were carried out by seeding human umbilical
vein cells (HUVEC) and human vascular Fibroblast cells (HVF). Moreover, all
polymeric grafts underwent degradation process, and the change in their
morphological structure properties was studied over 12 weeks at room
temperature. All scaffolds were also exposed to a controlled temperature of
37°C for four weeks, in phosphate-buffered saline solution (pH, 7.3).
It was found that all scaffolds displayed exceptional fibre structure and
excellent degradability with adequate steady weight-loss confirming the
suitability of the fabricated scaffolds for tissue engineering applications. The
coaxial and bilayer scaffolds degraded at a much slower (and steadier) rate
than the singular PCL and PLGA tubular scaffolds. Coaxial grafts fabricated
via coaxial needle showed an increase in their fibre diameter and pore size
volume than other membranes, but also showed to have significant tensile
strength, elongation at fracture, and Young’s modulus. To conclude, all
scaffolds have demonstrated to be reliable to adhere and proliferate HUVEC,
and HVF cells, but these cells were attracted to the PLGA membrane more
than other fabricated membranes.
|
8 |
Synthesis and Surface Modification of Nanoporous Poly(ε-caprolactone) Membrane for Biomedical ApplicationsYen, Chi January 2010 (has links)
No description available.
|
9 |
Development of polymer based composite filaments for 3D printingÅkerlund, Elin January 2019 (has links)
The relatively new and still growing field of 3D-printing has opened up the possibilities to manufacture patient-specific medical devices with high geometrical accuracy in a precise and quick manner. Additionally, biocompatible materials are a demand for all medical applications while biodegradability is of importance when developing scaffolds for tissue growth for instance. With respect to this, this project consisted of developing biocompatible and bioresorbable polymer blend and composite filaments, for fused deposition modeling (FDM) printing. Poly(lactic acid) (PLA) and polycaprolactone (PCL) were used as supporting polymer matrix while hydroxyapatite (HA), a calcium phosphate with similar chemical composition to the mineral phase of human bone, was added to the composites to enhance the biological activity. PLA and PCL content was varied between 90–70 wt% and 10-30 wt%, respectively, while the HA content was 15 wt% in all composites. All materials were characterized in terms of mechanical properties, thermal stability, chemical composition and morphology. An accelerated degradation study of the materials was also executed in order to investigate the degradation behavior as well as the impact of the degradation on the above mentioned properties. The results showed that all processed materials exhibited higher mechanical properties compared to the human trabecular bone, even after degradation with a mass loss of around 30% for the polymer blends and 60% for the composites. It was also apparent that the mineral accelerated the polymer degradation significantly, which can be advantageous for injuries with faster healing time, requiring only support for a shorter time period.
|
Page generated in 0.0783 seconds