• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EFFECTS OF LOCAL RNA SEQUENCE AND STRUCTURAL CONTEXTS ON RIBONUCLEASE P PROCESSING SPECIFICITY

ZHAO, JING 23 May 2019 (has links)
No description available.
2

AN INVESTIGATION OF THE REGULATION IN TWO GENETIC REGIONS HARBOURING ANTISENSE RNA IN STREPTOMYCES COELICOLOR

Hindra, - 10 1900 (has links)
<p>Bacterial small RNAs have emerged as a class of molecules having important regulatory roles. Accumulating numbers of <em>cis</em>-encoded sRNAs (antisense RNAs) have been recently discovered to be transcribed from the chromosomal DNA of many bacterial species, including the streptomycetes. Here, we investigate potential regulatory roles for two <em>S. coelicolor</em> antisense RNAs, scr4677 and α-abeA.</p> <p>The scr4677 antisense RNA is transcribed from the intergenic region between <em>SCO4676</em> (a gene encoding a conserved protein of unknown function) and <em>SCO4677</em>, encoding a regulatory protein with proposed anti-sigma factor activity. Transcription profiling revealed that scr4677 may not only interact with <em>SCO4676</em> mRNA but also with <em>SCO4677-4676</em> read-through transcripts. Our study suggested that scr4677 functioned to destabilize <em>SCO4676</em> mRNA, at the same time that it stabilized the <em>SCO4677-4676</em> read-through transcript. The potential role for scr4677 in destabilizing <em>SCO4676</em> mRNA was not mediated by the double stranded ribonuclease RNase III. Genetic analysis showed <em>scr4677</em> transcription was affected by SCO4677, and the transcription was apparently dependent on an unknown protein binding to the <em>SCO4676 </em>coding sequence.</p> <p>A second independent study focused on investigating the regulation of a previously uncharacterized genetic region, <em>SCO3287-3290</em>, since renamed <em>abeABCD</em>. This region contains an antisense RNA (α-abeA)-encoding gene, and is adjacent to the downstream <em>SCO3291</em> (<em>abeR</em>) gene, which encodes a putative regulatory protein. Genetic analysis revealed that overexpression of <em>abeR </em>or <em>abeABCD</em> stimulated the production of the blue-pigmented antibiotic actinorhodin, and deletion of <em>abeR</em> impaired actinorhodin production. Transcription analysis revealed the <em>abe</em> genes (including α-<em>abeA</em>) to be subject to multiple levels of regulation. We found an internal promoter within the <em>abeA</em> coding sequence and that required AbeR for expression. Furthermore, biochemical experiments demonstrated that AbeR regulated <em>abeBCD</em> directly, by binding to four heptameric repeats in its promoter region. The expression of α-<em>abeA</em> and other <em>abe</em> genes were differentially affected by RNase III.</p> / Doctor of Science (PhD)

Page generated in 0.0703 seconds