• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The machining of annealed and hardened steels using advanced ceramic cutting tools

Abrão, Alexandre Mendes January 1995 (has links)
No description available.
2

Supertvrdé řezné materiály a jejich efektivní využití / Superhard cutting materials and theirs effective use

Stradějová, Alena January 2009 (has links)
The master’s thesis is aimed at superhard cutting materials (polycrystalline diamond and polycrystalline cubic boron nitride) and their effective utilization. It describes the characteristics and production of these materials and evaluates product ranges of the most significant producers of tools and tool materials in given area. It further compares working conditions of selected world's producers which are related to the growing utilization of these materials in machining process. The thesis also deals with the cutting power of tools and provides a technical-economic assessment of the discussed issue.
3

Supertvrdé materiály a jejich efektivní využití / Superhard cutting materials and theirs effective use

Vampola, Lukáš January 2011 (has links)
Diploma thesis is focused on cutting superhard materials (polycrystalline diamond and polycrystalline cubic boron nitride). It deals with physical, mechanical and cutting properties, production and effective use. Evaluative product range of superhard cutting materials of the prominent world producers in terms of cutting conditions and type of materials machined in turning.
4

Joining Polycrystalline Cubic Boron Nitride and Tungsten Carbide by Partial Transient Liquid Phase Bonding

Cook, Grant O., III 16 December 2010 (has links) (PDF)
Friction stir welding (FSW) of steel is often performed with an insert made of polycrystalline cubic boron nitride (PCBN). Specifically, MS80 is a grade of PCBN made by Smith MegaDiamond that has been optimized for the FSW process. The PCBN insert is attached to a tungsten carbide (WC) shank by a compression fitting. However, FSW tools manufactured by this method inevitably fail by fracture in the PCBN. Permanently bonding PCBN to WC would likely solve the fracturing problem and increase the life of PCBN FSW tools to be economically viable. Partial transient liquid phase (PTLP) bonding, a process used to join ceramics with thin metallic interlayers, was proposed as a method to permanently bond PCBN to WC. PTLP bonding is often performed using three layers of pure elements. On heating, the two thin outer interlayers melt and bond to the ceramics. Concurrently, these liquid layers diffuse into the thicker refractory core until solidification has occurred isothermally. A procedure was developed to reduce the number of possible three-layer PTLP bonding setups to a small set of ideal setups using logical filters. Steps in this filtering method include a database of all existing binary systems, sessile drop testing of 20 elements, and a routine that calculates maximum interlayer thicknesses. Results of sessile drop testing showed that the PCBN grade required for this research could only be bonded with an alloy of Ti, Cu, Mg, and Sb. Two PTLP bond setups were tested using this special coating on the PCBN, but a successful bond could not be achieved. However, a PTLP bond of WC to WC was successful and proved the usefulness of the filtering procedure for determining PTLP bond setups. This filtering procedure is then set forth in generalized terms that can be used to PTLP bond any material. Also, recommendations for future research to bond this grade of PCBN, or some other grade, to WC are presented.

Page generated in 0.1302 seconds