11 |
Boron-containing compounds as inhibitors of HIV proteinaseMcNab, Donald January 1997 (has links)
HIV Proteinase (HIV PR) has proved to be an excellent target for the development of anti-AIDS drugs. Four inhibitors of this enzyme are now approved for clinical use but they, like others, suffer from shortcomings associated with their size and the fact they are peptides. In this thesis the development of small non-peptidic cyclic compounds is described. They were designed to inhibit HIV PR principally by targeting its unique structural features rather than by mimicking its natural substrates. The designed compounds all contained the borinic acid functional group which it was anticipated would interact with the two critical aspartic acid residues of HIV PR. A heteroatom incorporated into these compounds was positioned in such a way that a water molecule which plays a pivotal role in the binding of the enzyme's substrates was displaced. Finally, two benzyl groups were incorporated; these were designed to mimic the side-chains of phenylalanine and tyrosine frequently found in the substrates of HIV PR. The borinic acid functional group has not previously been incorporated into HIV PR inhibitors. Therefore, an analogous series of five 2,6-dibenzylated-4-heterocyclohexanols, where the borinic acid group had been replaced by a hydroxyl group, were prepared and evaluated against the enzyme. These were prepared through bis aldol condensations followed by reduction of the carbonyl group in the bisenones that resulted from dehydration. Although low solubility prevented the analysis of three of these compounds and thereby their effectiveness, two of them were found to be moderately active. Having validated the design of the heterocyclic template, attempts were then made to synthesise borinic acid-containing analogues of these 4-heterocyclohexanols. The attempted syntheses of a directly comparable series of compounds, through application of both bismetallation and bishydroboration strategies, was unsuccessful. Instead, two acyclic diphenyl borinic acids were synthesised. Additionally, several related cyclic borinic acids and acyclic borinic and boronic acids consistent with the design strategy were prepared, from diphenyl sulfone, 2-bromodiphenyl ether and 2-bromodiphenyl sulfide, through the appropriate lithiated species formed by either lithium-hydrogen or lithium-halogen exchange. During the attempted syntheses of a cyclic borinic acid by selective oxidative cleavage of an organoborane derived from diphenyl sulfone, two highly novel borane-amine adducts were synthesised. None of the boron-containing compounds assayed against HIV PR were found to be inhibitors of the enzyme. This is thought to be as a result of the phenyl groups being directly attached to the boron atom, rather than being present in benzyl substituents as had been originally planned.
|
12 |
Tissue culture and genetic transformation in potato breedingDeljou, Ali January 1997 (has links)
No description available.
|
13 |
Isolation And Molecular Characterization of Extracellular Lipase And Pectinase Producing Bacteria From Olive Oil Mills/Altan, Asena. Yenidünya, Ali Fazıl January 2004 (has links) (PDF)
Thesis (Master)--İzmir Institute of Technology, İzmir, 2004. / Includes bibliographical references (leaves. 65-74).
|
14 |
<i>Sclerotinia sclerotiorum</i> pathogenicity factors : regulation and interaction with the hostDallal Bashi, Zafer 21 April 2011
<p><i>S. sclerotiorum</i> has been studied for over 100 years. Despite this, a definite resistance mechanism to this plant pathogen remains to be identified. Researchers continue to examine the <i>S. sclerotiorum</i> life cycle to identify stages where effective disease management strategies can be applied. The development of molecular tools has allowed for a better understanding of the pathogen and created new opportunities for research on plant-pathogen interactions.</p>
<p>Most of the past research on pathogenicity factors produced by this pathogen, such as hydrolytic enzymes, studied them in isolation. This thesis examines how <i>S. sclerotiorum</i> pathogenicity factors, including cutinases, polygalacturonases and necrosis-inducing peptides, work in concert during the infection. The first study explored processes for cuticle penetration leading to the identification of the gene encoding S. sclerotiorum cutinase A and the characterization of the factors that govern its expression during the infection. The second study investigated how the pathogen penetrates the cell wall and proliferates within the host. In this regard, the mechanism with which expression of <i>S. sclerotiorum</i> polygalacturonase genes is regulated was elucidated. The interplay with host polygalacturonase inhibitor proteins was also demonstrated and related to the mechanisms of host resistance. The third study examined factors involved in tissue necrosis and two necrosis-inducing proteins were characterized. This study also unraveled part of the signaling mechanisms that allow for the pathogen to regulate pathogenicity gene expression during the infection. The signaling mechanisms were found to involve calcium, cAMP and at least one <i>S. sclerotiorum</i> mitogen activated protein kinase (SMK3) working in concert to coordinate the infection process. SMK3 was found to play a major role in a variety of vital functions, such as mycelial branching, infection cushion formation and sclerotia production. Genetic transformation of <i>S. sclerotiorum</i> was required to enable certain aspects of this study. My approach to this led to the development of a highly efficient method to isolate homokaryotic lines of filamentous fungi. In conclusion, this thesis has advanced the understanding of <i>S. sclerotiorum</i>-host interactions and identified a number of factors involved in pathogenesis.</p>
|
15 |
<i>Sclerotinia sclerotiorum</i> pathogenicity factors : regulation and interaction with the hostDallal Bashi, Zafer 21 April 2011 (has links)
<p><i>S. sclerotiorum</i> has been studied for over 100 years. Despite this, a definite resistance mechanism to this plant pathogen remains to be identified. Researchers continue to examine the <i>S. sclerotiorum</i> life cycle to identify stages where effective disease management strategies can be applied. The development of molecular tools has allowed for a better understanding of the pathogen and created new opportunities for research on plant-pathogen interactions.</p>
<p>Most of the past research on pathogenicity factors produced by this pathogen, such as hydrolytic enzymes, studied them in isolation. This thesis examines how <i>S. sclerotiorum</i> pathogenicity factors, including cutinases, polygalacturonases and necrosis-inducing peptides, work in concert during the infection. The first study explored processes for cuticle penetration leading to the identification of the gene encoding S. sclerotiorum cutinase A and the characterization of the factors that govern its expression during the infection. The second study investigated how the pathogen penetrates the cell wall and proliferates within the host. In this regard, the mechanism with which expression of <i>S. sclerotiorum</i> polygalacturonase genes is regulated was elucidated. The interplay with host polygalacturonase inhibitor proteins was also demonstrated and related to the mechanisms of host resistance. The third study examined factors involved in tissue necrosis and two necrosis-inducing proteins were characterized. This study also unraveled part of the signaling mechanisms that allow for the pathogen to regulate pathogenicity gene expression during the infection. The signaling mechanisms were found to involve calcium, cAMP and at least one <i>S. sclerotiorum</i> mitogen activated protein kinase (SMK3) working in concert to coordinate the infection process. SMK3 was found to play a major role in a variety of vital functions, such as mycelial branching, infection cushion formation and sclerotia production. Genetic transformation of <i>S. sclerotiorum</i> was required to enable certain aspects of this study. My approach to this led to the development of a highly efficient method to isolate homokaryotic lines of filamentous fungi. In conclusion, this thesis has advanced the understanding of <i>S. sclerotiorum</i>-host interactions and identified a number of factors involved in pathogenesis.</p>
|
16 |
The characterization of wood and wood fibre ultrastructure using specific enzymes /Hildén, Lars. January 2004 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2004. / Thesis documentation sheet inserted. Errata sheet inserted. Appendix reprints four papers and manuscripts co-authored with others. Includes bibliographical references. Also issued electronically via World Wide Web in PDF format; online version lacks appendix.
|
17 |
Pectic methyl and non-methyl esters and the environmental implications of methanol emissions from plantsFinlay, Christine Jane. January 2007 (has links)
Thesis (Ph.D.) -- University of Glasgow, 2007. / PhD thesis submitted to Environmental, Agricultural and Analytical Chemistry, Department of Chemistry, University of Glasgow. Includes bibliographical references. Print version also available.
|
18 |
Oak wilt development and its reduction by growth regulators I. Production and activity of oak wilt fungus pectinase, cellulase, and auxin. II. Effect of halogenated benzoic acids on oak trees, the oak wilt disease, and the oak wilt fungus /Geary, T. F. January 1962 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1962. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 57-64).
|
19 |
The transformation of wine yeasts with glucanase, xylanase and pectinase genes for improved clarification and filterability of wineStrauss, Marlene 03 1900 (has links)
Thesis (MScAgric) -- Stellenbosch University, 2003. / ENGLISH ABSTRACT: Cellulose is by far the most abundant carbohydrate available from plant biomass.
These biopolymers are therefore an important renewable source of food, fuels and
chemicals. Cellulose is embedded in a matrix of hemicellulose, lignin and pectin and
is composed of repeating glucose units linked by p-1,4-glycosidic bonds. The
individual molecules are held together by hydrogen bonds, forming largely crystalline
fibres. The hemicellulose, which is a low molecular weight heteropolysaccharide,
coats and binds the cellulose microfibrils, preventing the cellulose from becoming too
crystalline. Three predominant types of hemicelluloses are recognised, namely 1,3-
and 1,4-p-D-galactans, 1,4-p-D-mannans and 1,4-p-D-xylans, which are named
according to the sugar type that forms the polymer backbone. Pectic substances
contain rhamnogalacturonan backbones in which 1,4-linked a-D-galacturonan chains
are interrupted at intervals with a-L-rhamnopyranosyl residues carrying neutral side
chains. Two groups of enzymes, cellulases and pectinases, are required for the
microbial utilisation of crystalline cellulose and pectin. Cellulases are
multicomponent complexes that are often composed of endoglucanases,
exoglucanases and cellobiases. Cellobiose is the major end product of concerted
endoglucanase and exoglucanase activity. Cellobiose is then hydrolysed to glucose
by p-glucosidases. The enzymatic breakdown of pectic polymers occurs by the deesterifying
action of the saponifying enzymes, pectinesterase, releasing the methyl
groups of the pectin molecule, and by hydrolase or lyase action of the
depolymerases (pectin lyase, pectate lyase and polygalacturonase), splitting the a-
1.4-glycosidic linkages in the polygalacturonate chain.
The yeast Saccharomyces cerevisiae has been used extensively in the alcoholic
beverage industry for fermentations of wine, beer and other alcoholic beverages for
many years. However, it is unable to produce extracellular depolymerising enzymes
that can efficiently degrade polysaccharides, which are the main cause of
clarification and filtration problems. Enzyme preparations have been used in the
alcoholic beverage industries to degrade haze-forming polysaccharides, thereby
improving the filterability and quality of products such as beer and wine. An
alternative would be to develop S. cerevisiae strains that produce extracellular
polysaccharidases, enabling the yeast to degrade polysaccharides without the
addition of commercial enzyme preparations. These strains can also be very useful
in improving the quality of wine, as well as cutting the costs of the winemaking
process. The objective of this study was to investigate the effects of two transformed
S. cerevisiae strains on different wine grape varieties.
The following genes have been cloned and characterised previously: the
Aspergillus niger endo-p-xylanase gene (xynC), the Butyrivibrio fibrisolvens endo-|3-
1.4-glucanase gene (endl), the Erwinia chrysanthemi pectate lyase gene (pelE) and
the Erwinia carotovora polygalacturonase gene (p e h l). The yeast alcohol dehydrogenase I gene promoter (ADH1p), the alcohol dehydrogenase II gene
terminator (ADH2j), the tryptophan synthase gene terminator (TRP5r) and the yeast
mating-type pheromone a-factor secretion signal sequence (MFcrfs) were used to
compile the following gene constructs: ADH1 p-MFa1 s-end1-TRP5r (designated
END1), A DH1 p-xyn C-A DH2T (designated XYN4), ADH1 p-MFa1 s-peh1 -TRP5t
(designated PEH1) and ADH1 p-MFa1 s-pelE-TRP5r (designated PELE).
Two yeast integrating plasmids were constructed, one containing the END1 and
XYN4 gene cassettes and the other containing the PEH1-PELE cassette. These two
plasmids were then integrated into the URA3 locus of two separate industrial wine
yeast strains of S. cerevisiae. To facilitate selection of the industrial yeast
transformants in the absence of auxotrophic markers, the integrating plasmid
containing the END1 and XYN4 gene cassettes was issued with the dominant
selectable Geneticin G418-resistance {G f) marker. The integrating plasmid
harbouring the PEH1-PELE gene cassette was issued with the dominant selectable
sulphumetronmethyl resistance (SMR1) marker. The introduction of these plasmids
into commercial wine yeast strains directed the synthesis of END1, XYN4, PELE and
PEFI1 transcripts and the production of extracellular biologically active endo-P-1,4-
glucanase, endo-(3-xylanase, pectate lyase and polygalacturonase.
These recombinant yeasts were capable of extracting more colour from grape
skins of certain varieties, as well as leading to more freeflow wine as a result of the
more effective degradation of glucans, xylans and pectins in the skins. They also led
to decreased turbidity in the wine, making it more filterable.
Future work will entail further investigation of the effects of these recombinant
yeasts on different white and red wine grape varieties.
Another objective of this study was to screen non-Saccharomyces wine yeasts for
the production of extracellular hydrolytic enzymes. The reason for this part of the
thesis was to determine the types of extracellular hydrolytic enzymes that are
produced and to determine which genera produce which kinds of extracellular
enzymes. A total of 237 yeast isolates, belonging to the genera Kloeckera, Candida,
Debaryomyces, Rhodotorula, Pichia, Zygosaccharomyces, Hanseniaspora and
Kluyveromyces, were screened for the production of extracellular pectinases,
proteases, (3-glucanases, lichenases, p-glucosidases, cellulases, xylanases,
amylases and sulphite reductase activity. These yeasts were all isolated from
grapes and clarified grape juice to ensure that they were yeasts found in must during
the initial stages of fermentation. This information can be used to pave the way to
pinpoint the specific effects in wine of these enzymes produced by the so-called wild
yeasts associated with grape must. This information can also be used to transform
Saccharomyces wine yeasts with some of the genes from these non-Saccharomyces
yeasts for the production of extracellular hydrolytic enzymes.
However, future research will have to be done to determine the extent of the
activity of these enzymes in wine fermentations and to obtain better knowledge of the
physiological and metabolical features of non-Saccharomyces yeasts. / AFRIKAANSE OPSOMMING: Sellulose is verreweg die volopste koolhidraat in plantbiomassa. Hierdie biopolimere
is dus ‘n baie belangrike hernubare bron van voedsel, brandstof en chemikaliee.
Sellulose is in 'n matriks van hemisellulose, lignien en pektien gebed en is uit
herhaalde glukose eenhede, wat deur middel van (3-1,4-glukosidiese bindings geheg
is, saamgestel. Die individuele molekules word deur waterstofbindings aan mekaar
geheg, wat aanleiding gee tot die vorming van kristallyne vesels. Die hemisellulose,
wat 'n lae molekulere gewig heteropolisakkaried is, bedek en bind die sellulose
vesels en verhoed daarmee die vorming van vesels wat te kristallyn is. Drie
predominante tipes hemisellulose word herken en sluit 1,3- en 1,4-p-D-galaktane,
1,4-p-D-mannane en 1,4-p-D-xylane in, wat vernoem word volgens die
suikereenhede wat die polimeerruggraat vorm. Pektiene bestaan uit 'n
rhamnogalakturonaanruggraat waarin 1,4-gekoppelde a-D-galakturonaankettings
periodiek met a-L-rhamnopiranosiel residue, bevattende neutrale sykettings,
onderbreek word. Twee groepe ensieme, nl. pektinase en sellulase, word deur
mikrobes vir die benutting van kristallyne pektinase en sellulase vereis. Sellulase is
multikomponent komplekse wat dikwels uit endoglukanase, ekso-glukanase en
sellobiase saamgestel is. Sellobiose is die hoof eindproduk van die saamgestelde
aktiwiteit tussen endoglukanase en ekso-glukanase en word verder gehidroliseer tot
glukose deur |3-glukosidases. Die ensimatiese afbraak van pektien polimere vind
deur die de-esterifiserings aksie van die versepings ensiem, pektienesterase, plaas.
Dit lei tot die vrystelling van die metielgroepe van die pektienmolekuul. Deur die
hidrolase of liase aksie van die depolimerase (pektien liase, pektaatliase en
poligalakturonase), split die a-1,4-glukosidiese verbindings in die
poligalakturonaatketting.
Die gis Saccharomyces cerevisiae word al vir jare ekstensief in die alkoholbedryf
vir die fermentasie van verskeie produkte, veral druiwe, gebruik. S. cerevisiae besit
egter nie die vermoe om ekstrasellulere depolimiserende ensieme wat vir die
effektiewe degradasie van polisakkariede verantwoordelik is, te produseer nie, wat
die hoof oorsaak van die verhelderings- en filtreringsprobleme in onder andere wyn
en bier is. Dit veroorsaak ook dat S. cerevisiae nie oor die vermoe beskik om
waasvormende polisakkariede in wyn te degradeer nie. Tans word ensiempreparate
in die alkoholiese bedryf vir die degradasie van die probleem
polisakkariede gebruik. Sodoende word die filtreerbaarheid en kwaliteit van wyn en
bier verbeter. ‘n Goeie alternatief is die ontwikkeling van S. cerevisiae-rasse wat oor
die vermoe beskik om ekstrasellulere polisakkarase te produseer en dus
polisakkariede self sonder die byvoeging van eksterne kommersiele
ensiempreparate te degradeer. Hierdie rasse sal baie voordelig wees vir die
verbetering van wynkwaliteit, sowel as vir die vermindering van die kostes verbonde
aan die wynmaakproses. Die objektief van hierdie studie is dus om die uitwerking van twee getransformeerde S. cerevisiae rasse, wat ekstrasellulere polisakkarases
produseer, op verskillende wyndruifvarieteite na te vors.
Die volgende gene is reeds voorheen gekloneer en gekarakteriseer: die endo-pxylanase-
geen (xynC) van Aspergillus niger, die endo-p-1,4-glukanase-geen (endl)
van Butyrivibrio fibrisolvens, die pektaatliase-geen (pe/E) van Erwinia chrysanthemi
en die poligalakturonase-geen (p e h l) van Erwinia carotovora. Die
alkoholdehidrogenase-geenpromotor (ADH1P), die alkoholdehidrogenase IIgeentermineerder
(ADH2T), die gistriptofaansintase geen se termineerder (TRP5t)
en die sekresiesein van die gisferomoon a-faktor (MFa1s) is gebruik om die
volgende geenkonstrukte saam te stel: ADH1 p-MFa1 s-end1 -TRP5t (toekend as
END1), ADH1 p-xynC-ADH2T (bekend as XYN4), ADH1 p-MFa1 s-peh1-TRP5T
fbekend as PEH1), and ADH1 p-MFa1 s-pelE-TRP5T (bekend as PELE).
Twee gisintegrerings plasmiede is gekonstrueer, een wat die END1- en XYN4-
geenkassette bevat en die ander wat die PEH1-PELE-kasset besit. Hierdie twee
plasmiede is daarna in twee aparte industriele wyngisrasse van S. cerevisiae by die
URA3 lokus geintegreer. Vir die seleksie van die industriele wyngistransformante in
die afwesigheid van ouksotrofiese merkers, is die dominante selekteerbare Geneticin
G418 weerstandbiedende (G f) merker in die END1- en XYA/4-geenkassetbevattende
plasmied geintegreer. Die dominante selekteerbare sulfumetronmetielweerstandbiedende
(SMR1) merker is in die integreringsplasmied, wat die PEH1-
PELE-geenkasset bevat, geintegreer vir seleksie. Transformasie van hierdie
plasmiede in kommersiele wyngisrasse het tot die direkte sintese van die END1-,
XYN4-, PELE- en PEH1-transkripte aanleiding gegee, sowel as tot die produksie van
die biologies aktiewe ekstrasellulere endo-P-1,4-glukanase, endo-P-xylanase,
pektaatliase en poligalaturonase.
Tydens die wynmaakproses het bogenoemde rekombinante giste aanleiding
gegee tot verhoogde kleurekstraksie uit die druifdoppe van sekere varieteite, asook
tot verhoogde vryvloei wyn. Dit is verkry deur die effektiewe degradasie van die
glukane, xilane en pektiene in die doppe. Die rekombinante giste het ook verlaagde
turbiditeit in die wyn tot gevolg gehad, wat die wyne makliker filtreerbaar maak.
Hierdie werk was net die eerste stap. In die toekoms sal verdere navorsing
gedoen moet word om die presiese effekte van hierdie rekombinante giste op
verskillende rooi en wit druifvarieteite te bepaal.
‘n Ander fokus van hierdie tesis was om nie-Saccharomyces wyngiste vir die
produksie van ekstrasellulere hidrolitiese ensieme te selekteer. Die rede hiervoor is
om te bepaal watter tipes ekstrasellulere hidrolitiese ensieme geproduseer word,
asook watter ensieme deur watter genera geproduseer word, ‘n Totaal van 237 gisisolate
wat tot die generas Kloeckera, Candida, Debaryomyces, Rhodotorula, Pichia,
Zygosaccharomyces, Hanseniaspora en Kluyveromyces behoort, is vir die produksie
van ekstrasellulere pektinase, protease, p-glukanase, lichenase, p-glukosidase,
sellulase, xilanase, amilase en sulfiet reduktase-aktiwiteit getoets. Hierdie giste is
almal vanaf druiwe en druiwesap geVsoleer om te verseker dat dit wel giste is wat gedurende die beginfases van fermentasie in die mos teenwoordig is. Hierdie
inligting kan nou verder gebruik word om die spesifieke effekte wat hierdie ensieme,
wat deur die sogenaamde wilde giste geproduseer word, tydens die beginfases van
fermentasies op die mos het, te bepaal. Hierdie inligting kan ook in die toekoms
gebruik word om Saccharomyces-wyngiste met gene van die ri\e-Saccharomycesgiste
te transformeer om ekstrasellulere hidrolitiese ensieme vir die degradasie van
die problematiese polisakkariede in wyn te produseer.
Daar sal egter in die toekoms baie navorsing gedoen moet word om die omvang
van hierdie ensiemaktiwiteite in wynfermentasies te bepaal, asook om meer kennis
te bekom oor die fisiologiese en metaboliese samestelling van nie-Saccfraromyces
wyngiste.
|
20 |
Phosphatidase and polygalacturonase in extracts of diseased and healthy American elms and in cultures of Ceratocystis ulmi.Woods, Alice Callaway 01 January 1972 (has links) (PDF)
No description available.
|
Page generated in 0.0496 seconds