Spelling suggestions: "subject:"polyhydroxyamide"" "subject:"polyhydroxy""
1 |
Synthesis and Characterization of Toughened Thermally Rearranged Polymers, Poly(2,6-Dimethylphenylene-oxide) Based Copolymers and Polymer Blends for Gas Separation MembranesZhang, Wenrui 20 June 2017 (has links)
Thermally rearranged (TR) polymers have outstanding gas separation properties, but are limited in their industrial application due to being mechanically brittle. A series of low volume fraction of a poly(arylene ether sulfone) (PAES) block was introduced into the TR precursor polyhydroxyimide (PI) chain to improve mechanical properties without compromising gas transport properties. The multiblock copolyhydroxyimide incorporated the PAES in systematically varied amounts and copolymerized it with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 3,3’-dihydroxy-4,4’-diaminobiphenyl. Before thermal rearrangement, the PI-co-PAES precursors exhibited much more improved mechanical properties (tensile stress and strain at break) than those of homo polyimide precursor. After thermal rearrangement, tensile stress and strain at break of all TR copolymers decreased comparing to their corresponding precursors, but improved comparing to the homo TR polymer. Poly(phenylene oxide) (PPO) based copolymers (Chapter 4) and polymer blends (Chapter 5) were also studied for use as gas separation membranes. The polymer materials were cast into films, then crosslinked in the solid state with UV light. The ketone and benzylic methyl groups crosslinked upon exposure to UV light. For the study of PPO copolymers, copolymers were prepared by polycondensation of a difunctional PPO oligomer with 4,4’-difluorobenzophenone or 1,3-bis(4-fluorobenzoyl)benzene respectively. This study offers a means for fabrication of membrane films, fibers or composites, as well as tuning of gas transport properties through crosslinking in the solid state. While for the study of PPO polymer blends, PPO polymers with Mn’s from 2000-22,000 g/mole were synthesized and blended with a poly(arylene ether ketone) derived from bisphenol A and difluorobenzophenone (BPA-PAEK). The crosslinked blends had improved gas selectivities over their linear counterparts. The 90/10 wt/wt 22k PPO/BPA PAEK crosslinked blends gained the most O2/N2 selectivity and maintained a high permeability. / Ph. D. / Membrane gas separation has become a fast-growing industrial technology because of its many advantages over traditional separation technologies including low capital cost and energy consumption relative to thermal distillation methods, and higher operational flexibility. Currently, membrane gas separation is widely used in processing raw natural gas to meet certain specifications before delivery to pipelines. Researches in this dissertation mainly focus on synthesis and characterization of membrane gas separation materials. In chapter 3, one type of thermally rearranged copolymer membrane was obtained, which could be potentially used in industrial field due to its improved mechanical property. In chapter 4 and 5, a series of poly(phenylene oxide) based copolymers and blends were studied. After UV-crosslinking reaction, poly(phenylene oxide) membranes showed improved gas selectivities over their linear counterparts.
|
Page generated in 0.0605 seconds