• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 23
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 146
  • 26
  • 25
  • 24
  • 23
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Effect of Graphene on Polyimide/Poly(Dimethyl Siloxane) Copolymer for Applications in Electrochemical Energy Storage

Nelamangala Sathyanarayana, Sakshi January 2019 (has links)
No description available.
92

Processing and Evaluation of Multifunctional Polyimide Composite Coatings and Membranes

Longun, Jimmy 24 September 2013 (has links)
No description available.
93

Development of Multicomponent Polyimide - Carbon Nanotube/polypyrrole Composites for Enhanced Energy Storage in Supercapacitor Electrodes

Gooneratne, Ruchinda January 2022 (has links)
No description available.
94

Vat Photopolymerization of High-Performance Materials through Investigation of Crosslinked Network Design and Light Scattering Modeling

Feller, Keyton D. 08 June 2023 (has links)
The reliance on low-viscosity and photoactive resins limits the accessible properties for vat photopolymerization (VP) materials required for engineering applications. This has limited the adoption of VP for producing end-use parts, which typically require high MW polymers and/or more stable chemical functionality. Decoupling the viscosity and molecular weight relationship for VP resins has been completed recently for polyimides and highperformance elastomers by photocuring a scaffold around polymer precursors or polymer nanoparticles, respectively. Both of these materials are first shaped by printing a green part followed by thermal post-processing to achieve the final part properties. This dissertation focuses on improving the processability of these material systems by (i) investigating the impact of scaffold architecture and polysalt monomer composition on photocuring, thermal post-processing, and resulting thermomechanical properties and (ii) developing a Monte Carlo ray-tracing (MCRT) simulation to predict light scattering and photocuring behavior in particle-filled resins, specifically zinc oxide nanoparticles in a rigid polyester resin and styrene butadiene rubber latex resin. The first portion of the dissertation introduces VP of a tetra-acid and half-ester-based polysalt resin derived from 4,4'-oxydiphthalic anhydride and 4,4-oxydianiline (ODPA-ODA), a fully aromatic polyimide with high glass transition temperature and thermal stability. This polyimide, and polyimides like this, find use in demanding industries such as aerospace, automotive and electronic applications. The author evaluated the hypothesis that a non-bound triethylene glycol dimethacrylate (TEGDMA) scaffold would facilitate more efficient scaffold burnout and thus achieve parts with reduced off-gassing potential at elevated temperatures. Both resins demonstrated photocuring and were able to print solid and complex latticed parts. When thermally processed to 400 oC, only 3% of the TEGDMA scaffold remained within the final parts. The half-ester resin exhibits higher char yield, resulting from partial degradation of the polyimide backbone, potentially caused by lack of solvent retention limiting the imidization conversion. The tetra-acid exhibits a Tg of 260oC, while the half-ester displays a higher Tg of 380 oC caused by the degradation of the polymer backbone, forming residual char, restricting chain mobility. Solid parts displayed a phase-separated morphology while the half-ester latticed parts appear solid, indicating solvent removal occurs faster in the half-ester composition, presumably due to reduced polar acid functionality. This platform and scaffold architecture enables a modular approach to produce novel and easily customizable UV-curable polyimides to easily increase the variety of polyimides and the accessible properties of printed polyimides through VP. The second section of this dissertation describes the creation and validation of a MCRT simulation to predict light scattering and the resulting photocured shape of a ZnO-filled resin nanocomposite. Relative to prior MCRT simulations in the literature, this approach requires only simple, easily acquired inputs gathered from dynamic light scattering, refractometry, UV-vis spectroscopy, beam profilometry, and VP working curves to produce 2D exposure distributions. The concentration of 20 nm ZnO varied from 1 to 5 vol% and was exposed to a 7X7 pixel square ( 250 µm) from 5 to 11 s. Compared to experimentally produced cure profiles, the MCRT simulation is shown to predict cure depth within 10% (15 µm) and cure widths within 30% (20 µm), below the controllable resolution of the printer. Despite this success, this study was limited to small particles and low loadings to avoid polycrystalline particles and maintain dispersion stability for the duration of the experiments. Expanding the MCRT simulation to latex-based resins which are comprised of polymer nanoparticles that are amorphous, homogeneous, and colloidally stable. This allows for validating the MCRT with larger particles (100 nm) at higher loadings. Simulated cure profiles of styrene-butadiene rubber (SBR) loadings from 5 vol% to 25 vol% predicted cure depths within 20% ( µm) and cure widths within 50% ( µm) of experimental values. The error observed within the latex-based resin is significantly higher than in the ZnO resin and potentially caused by the green part shrinking due to evaporation of the resin's water, which leads to errors when trying to experimentally measure the cure profiles. This dissertation demonstrates the development of novel and functional materials and creation process-related improvements. Specifically, this dissertation presents a materials platform for the future development of unique photocurable engineering polymers and a corresponding physics-based model to aid in processing. / Doctor of Philosophy / Vat Photopolymerization (VP) is a 3D printing process that uses ultraviolet (UV) light to selectively cure liquid photosensitive resin into a solid part in a layer-by-layer fashion. Parts produced with VP exhibit a smooth surface finish and fine features of less than 100 µm (i.e., width of human hair). Recoating the liquid resin for each layer limits VP to low-viscosity resins, thus limiting the molecular weight (and thus performance) of the printed polymers accessible. Materials that are low molecular weight are limited in achieving desirable properties, such as elongation, strength, and heat resistance. Solvent-based resins, such as polysalt and latex resins have demonstrated the ability to decouple the viscosity and molecular weight relationship by eliminating polymer entanglements using low-molecular-weight precursors or isolating high-molecular-weight polymers into particles. This dissertation focuses on expanding and improving the printability of these methods. The second chapter of the dissertation investigates the impact of scaffold architecture in printing polyimide polysalts to improve scaffold burnout. Polysalts are polymers that exist as dissolved salts in solution, with each monomer holding two electronic charges. When heated, the solvent evaporates and the monomers react to form a high molecular-weight polymer. While previous work featured a polysalt that was covalently bonded to the monomers, the polysalt in this work is made printable by co-dissolving a scaffold. The polysalt resins are photocured and thermally processed to polymerize and imidize into a high-molecular-weight polymer, while simultaneously pyrolyzing the scaffold. Using a co-dissolved scaffold allows the investigation of two different monomers of tetra-acid and half-ester functionality. The half-ester composition underwent degradation during heating, increasing the printed parts' glass transition or softening point. The scaffold had little impact on the polysalt polymerization or final part properties and was efficiently removed, with only 3% remaining in final parts. The composition and properties of the monomers selected played a bigger role due to partial degradation altering the properties of the final parts. Overall, this platform and scaffold architecture allows for a larger number of polyimides to be accessible and easily customizable for future VP demands. The third chapter describes the challenges of processing photocurable resins that contain particles due to the UV light scattering in the resin vat during printing. When the light from the printer hits a particle, it is scattered in all directions causing the layer shape to be distorted from the designed shape. To overcome this, a Monte Carlo ray-tracing (MCRT) simulation was developed to mimic light rays scattering within the resin vat. The simulation was validated by comparing simulation results against experiment trials of photocuring resins containing 20nm zinc oxide (ZnO) nanoparticles. The MCRT simulation predicted all the experimental cure depths within 10% (20 µm) and cured widths within 30% (15 µm) error. Despite the high accuracy, this study was limited to small particles and low concentrations. Simulating larger particles is difficult as the simulation assumes each particle to be uniform throughout its volume, which is atypical of large ceramic particles. The fourth chapter enables high particle volume loading by using a highly stretchable styrene-butadiene rubber (SBR) latex-based resin. Latex-based resins maintain low viscosity by separating large polymer chains into nano-particles that are noncrystalline and uniform. When the chains are separated, they cannot interact or entangle, keeping the viscosity low even at high concentrations (>30 vol%). Like the ZnO-filled resin, the latex resin is experimentally cured and the MCRT simulation predicts the resulting cure shape. The MCRT simulation predicted cure depths within 20% (100 µm) and over-cure widths within 50% (100 µm) of experimental values. This error is substantially higher than the ZnO work and is believed to be caused by the water evaporating from the cured resin resulting in inconsistent measurements of the cured dimensions.
95

Application of the Thermal Flash Technique for Characterizing High Thermal Diffusivity Micro and Nanostructures

Majerus, Laurent J. January 2009 (has links)
No description available.
96

Emulsion Templated Polyimide Aerogel Foam and Hybrid Aerogel Foam as Absorbents for Oil Cleanup

Gu, Zipeng 05 June 2018 (has links)
No description available.
97

SYNTHESIS, CHARACTERIZATION AND PROPERTIES OF POLYPYRROLE/POLYIMIDES COMPOSITES

LEVINE, KIRILL LVOVICH January 2002 (has links)
No description available.
98

HYBRID X-BAND POWER AMPLIFIER DEVELOPMENT FOR 3D-IC PHASED ARRAY MODULE

XU, PENG 17 April 2003 (has links)
No description available.
99

Characterization of Vertical Interconnects in 3-D Monolithic Microwave Integrated Circuits (3-D MMIC)

Kang, Qinghua (George) 01 July 2003 (has links)
No description available.
100

Evaluation of Solvent Resistant Nano-Filtration (SRNF) Membranes for Small-Molecule Purification and Recovery of Polar Aprotic Solvents for Re-Use

Anim-Mensah, Alexander R. January 2007 (has links)
No description available.

Page generated in 0.0301 seconds