• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Heat Conduction Through PMC Components Made Using Resin Transfer Moulding

Sakka, Aymen 16 November 2012 (has links)
The increasing demand for polymer matrix composites (PMCs) from the airframe industry raises the issues of productivity, cost and reproducibility of manufactured PMC components. Performance reproducibility is closely related to the manufacturing technique. Resin transfer moulding (RTM) offers the advantage of flexible manufacturing of net-shape PMC components with superior repeatability starting from ready-to-impregnate dry reinforcements. An RTM apparatus was developed for manufacturing PMC plates and demonstrator components representative of actual, PMC components and PMC moulds made and used in the airframe industry. The RTM process developed in this work involved making net-shape dry carbon fibre preforms and impregnating them an epoxy resin, targeting mould applications. Thermal repeatability of different net-shape PMC components manufactured using the RTM apparatus developed in-house was investigated. Effects of bonding an outer copper plate onto the PMC material, targeting mould applications known as integrally heated copper tooling (IHCT), were explored. Heat conduction through the PMC components was studied using simulation models validated by experimental data obtained primarily by thermography. Manufactured PMC components showed good repeatability, particularly in terms of thermal behaviour. The IHCT technique was found to be well suited for mould applications. Expected advantages of thermography were materialised. Finally, the simulation models developed were in good agreement with experimental data.
2

Investigation of Heat Conduction Through PMC Components Made Using Resin Transfer Moulding

Sakka, Aymen 16 November 2012 (has links)
The increasing demand for polymer matrix composites (PMCs) from the airframe industry raises the issues of productivity, cost and reproducibility of manufactured PMC components. Performance reproducibility is closely related to the manufacturing technique. Resin transfer moulding (RTM) offers the advantage of flexible manufacturing of net-shape PMC components with superior repeatability starting from ready-to-impregnate dry reinforcements. An RTM apparatus was developed for manufacturing PMC plates and demonstrator components representative of actual, PMC components and PMC moulds made and used in the airframe industry. The RTM process developed in this work involved making net-shape dry carbon fibre preforms and impregnating them an epoxy resin, targeting mould applications. Thermal repeatability of different net-shape PMC components manufactured using the RTM apparatus developed in-house was investigated. Effects of bonding an outer copper plate onto the PMC material, targeting mould applications known as integrally heated copper tooling (IHCT), were explored. Heat conduction through the PMC components was studied using simulation models validated by experimental data obtained primarily by thermography. Manufactured PMC components showed good repeatability, particularly in terms of thermal behaviour. The IHCT technique was found to be well suited for mould applications. Expected advantages of thermography were materialised. Finally, the simulation models developed were in good agreement with experimental data.
3

Investigation of Heat Conduction Through PMC Components Made Using Resin Transfer Moulding

Sakka, Aymen January 2012 (has links)
The increasing demand for polymer matrix composites (PMCs) from the airframe industry raises the issues of productivity, cost and reproducibility of manufactured PMC components. Performance reproducibility is closely related to the manufacturing technique. Resin transfer moulding (RTM) offers the advantage of flexible manufacturing of net-shape PMC components with superior repeatability starting from ready-to-impregnate dry reinforcements. An RTM apparatus was developed for manufacturing PMC plates and demonstrator components representative of actual, PMC components and PMC moulds made and used in the airframe industry. The RTM process developed in this work involved making net-shape dry carbon fibre preforms and impregnating them an epoxy resin, targeting mould applications. Thermal repeatability of different net-shape PMC components manufactured using the RTM apparatus developed in-house was investigated. Effects of bonding an outer copper plate onto the PMC material, targeting mould applications known as integrally heated copper tooling (IHCT), were explored. Heat conduction through the PMC components was studied using simulation models validated by experimental data obtained primarily by thermography. Manufactured PMC components showed good repeatability, particularly in terms of thermal behaviour. The IHCT technique was found to be well suited for mould applications. Expected advantages of thermography were materialised. Finally, the simulation models developed were in good agreement with experimental data.
4

Mechanisms for Kink Band Evolution in Polymer Matrix Composites: A Digital Image Correlation and Finite Element Study

January 2016 (has links)
abstract: Polymer matrix composites (PMCs) are attractive structural materials due to their high stiffness to low weight ratio. However, unidirectional PMCs have low shear strength and failure can occur along kink bands that develop on compression due to plastic microbuckling that carry strains large enough to induce nonlinear matrix deformation. Reviewing the literature, a large fraction of the existing work is for uniaxial compression, and the effects of stress gradients, such as those present during bending, have not been as well explored, and these effects are bound to make difference in terms of kink band nucleation and growth. Furthermore, reports on experimental measurements of strain fields leading to and developing inside these bands in the presence of stress gradients are also scarce and need to be addressed to gain a full understanding of their behavior when UDCs are used under bending and other spatially complex stress states. In a light to bridge the aforementioned gaps, the primary focus of this work is to understand mechanisms for kink band evolution under an influence of stress-gradients induced during bending. Digital image correlation (DIC) is used to measure strains inside and around the kink bands during 3-point bending of samples with 0°/90° stacking made of Ultra-High Molecular Weight Polyethylene Fibers. Measurements indicate bands nucleate at the compression side and propagate into the sample carrying a mixture of large shear and normal strains (~33%), while also decreasing its bending stiffness. Failure was produced by a combination of plastic microbuckling and axial splitting. The microstructure of the kink bands was studied and used in a microstructurally explicit finite element model (FEM) to analyze stresses and strains at ply level in the samples during kink band evolution, using cohesive zone elements to represent the interfaces between plies. Cohesive element properties were deduced by a combination of delamination, fracture and three-point bending tests used to calibrate the FEMs. Modeling results show that the band morphology is sensitive to the shear and opening properties of the interfaces between the plies. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2016
5

Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE / Contribution on the topic COMPOSITE MATERIALS - MATERIAL COMPOUNDS : Status quo and research approaches

Nestler, Daisy Julia 15 April 2014 (has links) (PDF)
Vielschichtige Eigenschaftsprofile benötigen zunehmend moderne Verbundwerkstoffe und Werkstoffverbunde einschließlich der raschen Entfaltung neuer Fertigungstechnologien, da der monolithische Werkstoff bzw. ein einziger Werkstoff den heutigen komplexen Anforderungen nicht mehr genügen kann. Zukünftige Werkstoffsysteme haben wirtschaftlich eine Schlüsselposition und sind auf den Wachstumsmärkten von grundlegender Bedeutung. Gefragt sind maßgeschneiderte Leichtbauwerkstoffe (tailor-made composites) mit einem adaptierten Design. Dazu müssen Konzepte entwickelt werden, um die Kombination der Komponenten optimal zu gestalten. Das erfordert werkstoffspezifisches Wissen und Korrelationsvermögen sowie die Gestaltung komplexer Technologien, auch unter dem Aspekt der kontinuierlichen Massen- und Großserienfertigung (in-line, in-situ) und damit der Kostenreduzierung bislang teurer Verbundwerkstoffe und Werkstoffverbunde. In der vorliegenden Arbeit wird in vergleichbarer und vergleichender Art und Weise sowie abstrahierter Form ein Bogen über das Gesamtgebiet der Verbundwerkstoffe und Werkstoffverbunde gespannt. Eine zusammenfassende Publikation über dieses noch sehr junge, aber bereits breit aufgestellte Wissenschaftsgebiet fehlt bislang. Das ist der Separierung der einzelnen, fest aufgeteilten Gruppierungen der Verbundwerkstoffe geschuldet. Querverbindungen werden selten hergestellt. Dieses Defizit in einem gewissen Maße auszugleichen, ist Ziel der Arbeit. Besondere Berücksichtigung finden Begriffsbestimmungen und Klassifikationen, Herstellungsverfahren und Eigenschaften der Werkstoffe. Es werden klare Strukturierungen und Übersichten herausgearbeitet. Zuordnungen von etablierten und neuen Technologien sollen zur Begriffsstabilität der Terminologien „Mischbauweise“ und „Hybrider Verbund“ beitragen. Zudem wird die Problematik „Recycling und Recyclingtechnologien“ diskutiert. Zusammenfassend werden Handlungsfelder zukünftiger Forschungs- und Entwicklungsprojekte spezifiziert. Aus dem Blickwinkel der verschiedenen Herstellungsrouten insbesondere für Halbzeuge und Bauteile und der dabei gewonnenen Erkenntnisse werden verallgemeinerte Konzepte für tailor-made Verbundwerkstoffe und Werkstoffverbunde vorgeschlagen („Stellschraubenschema“). Diese allgemeinen Werkstoffkonzepte werden auf eigene aktuelle Forschungsprojekte der Schwerpunktthemen Metallmatrix- und Polymermatrix-Verbundwerkstoffe sowie der hybriden Werkstoffverbunde appliziert. Forschungsfelder für zukünftige Projekte werden abgeleitet. Besonderes Augenmerk gilt den hybriden Verbunden als tragende Säule zukünftiger Entwicklungen im Leichtbau. Hier spielen in-line- und in-situ-Prozesse eine entscheidende Rolle für eine großseriennahe, kosteneffiziente und ressourcenschonende Produktion. / Complex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary. The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made. The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
6

Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE: Status quo und Forschungsansätze

Nestler, Daisy Julia 04 November 2013 (has links)
Vielschichtige Eigenschaftsprofile benötigen zunehmend moderne Verbundwerkstoffe und Werkstoffverbunde einschließlich der raschen Entfaltung neuer Fertigungstechnologien, da der monolithische Werkstoff bzw. ein einziger Werkstoff den heutigen komplexen Anforderungen nicht mehr genügen kann. Zukünftige Werkstoffsysteme haben wirtschaftlich eine Schlüsselposition und sind auf den Wachstumsmärkten von grundlegender Bedeutung. Gefragt sind maßgeschneiderte Leichtbauwerkstoffe (tailor-made composites) mit einem adaptierten Design. Dazu müssen Konzepte entwickelt werden, um die Kombination der Komponenten optimal zu gestalten. Das erfordert werkstoffspezifisches Wissen und Korrelationsvermögen sowie die Gestaltung komplexer Technologien, auch unter dem Aspekt der kontinuierlichen Massen- und Großserienfertigung (in-line, in-situ) und damit der Kostenreduzierung bislang teurer Verbundwerkstoffe und Werkstoffverbunde. In der vorliegenden Arbeit wird in vergleichbarer und vergleichender Art und Weise sowie abstrahierter Form ein Bogen über das Gesamtgebiet der Verbundwerkstoffe und Werkstoffverbunde gespannt. Eine zusammenfassende Publikation über dieses noch sehr junge, aber bereits breit aufgestellte Wissenschaftsgebiet fehlt bislang. Das ist der Separierung der einzelnen, fest aufgeteilten Gruppierungen der Verbundwerkstoffe geschuldet. Querverbindungen werden selten hergestellt. Dieses Defizit in einem gewissen Maße auszugleichen, ist Ziel der Arbeit. Besondere Berücksichtigung finden Begriffsbestimmungen und Klassifikationen, Herstellungsverfahren und Eigenschaften der Werkstoffe. Es werden klare Strukturierungen und Übersichten herausgearbeitet. Zuordnungen von etablierten und neuen Technologien sollen zur Begriffsstabilität der Terminologien „Mischbauweise“ und „Hybrider Verbund“ beitragen. Zudem wird die Problematik „Recycling und Recyclingtechnologien“ diskutiert. Zusammenfassend werden Handlungsfelder zukünftiger Forschungs- und Entwicklungsprojekte spezifiziert. Aus dem Blickwinkel der verschiedenen Herstellungsrouten insbesondere für Halbzeuge und Bauteile und der dabei gewonnenen Erkenntnisse werden verallgemeinerte Konzepte für tailor-made Verbundwerkstoffe und Werkstoffverbunde vorgeschlagen („Stellschraubenschema“). Diese allgemeinen Werkstoffkonzepte werden auf eigene aktuelle Forschungsprojekte der Schwerpunktthemen Metallmatrix- und Polymermatrix-Verbundwerkstoffe sowie der hybriden Werkstoffverbunde appliziert. Forschungsfelder für zukünftige Projekte werden abgeleitet. Besonderes Augenmerk gilt den hybriden Verbunden als tragende Säule zukünftiger Entwicklungen im Leichtbau. Hier spielen in-line- und in-situ-Prozesse eine entscheidende Rolle für eine großseriennahe, kosteneffiziente und ressourcenschonende Produktion. / Complex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary. The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made. The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
7

Oblique angle pulse-echo ultrasound characterization of barely visible impact damage in polymer matrix composites

Welter, John T. January 2019 (has links)
No description available.

Page generated in 0.0727 seconds