1 |
A Focused Poly(Aminoether) Library for Transgene Delivery to Cancer CellsJanuary 2011 (has links)
abstract: Cancer diseases are among the leading cause of death in the United States. Advanced cancer diseases are characterized by genetic defects resulting in uncontrollable cell growth. Currently, chemotherapeutics are one of the mainstream treatments administered to cancer patients but are less effective if administered in the later stages of metastasis, and can result in unwanted side effects and broad toxicities. Therefore, current efforts have explored gene therapy as an alternative strategy to correct the genetic defects associated with cancer diseases, by administering genes which encode for proteins that result in cell death. While the use of viral vectors shows high level expression of the delivered transgene, the potential for insertion mutagenesis and activation of immune responses raise concern in clinical applications. Non-viral vectors, including cationic lipids and polymers, have been explored as potentially safer alternatives to viral delivery systems. These systems are advantageous for transgene delivery due to ease of synthesis, scale up, versatility, and in some cases due to their biodegradability and biocompatibility. However, low efficacies for transgene expression and high cytotoxicities limit the practical use of these polymers. In this work, a small library of twenty-one cationic polymers was synthesized following a ring opening polymerization of diglycidyl ethers (epoxides) by polyamines. The polymers were screened in parallel and transfection efficacies of individual polymers were compared to those of polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Seven lead polymers that demonstrated higher transgene expression efficacies than PEI in pancreatic and prostate cancer cells lines were identified from the screening. A second related effort involved the generation of polymer-antibody conjugates in order to facilitate targeting of delivered plasmid DNA selectively to cancer cells. Future work with the novel lead polymers and polymer-antibody conjugates developed in this research will involve an investigation into the delivery of transgenes encoding for apoptosis-inducing proteins both in vitro and in vivo. / Dissertation/Thesis / M.S. Chemical Engineering 2011
|
2 |
Characterization of Intermolecular Interactions in Nanostructured MaterialsHudson, Amanda Gayle 01 December 2015 (has links)
Advanced analytical techniques were utilized to investigate the intermolecular forces in several nanostructured materials. Techniques including, but not limited to, isothermal titration calorimetry (ITC), variable temperature Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-Vis) thermal curves were used to study the fundamental interactions present in various nanomaterials, and to further probe the influence of these interactions on the overall behavior of the material. The areas of focus included self-assembly of surfactant micelles, polycation complexation of DNA, and temperature-dependent hydrogen bonding in polymeric systems.
ITC was successfully used to determine the low critical micelle concentration (CMC) for a novel gemini surfactant with limited water solubility. CMCs were measured at decreasing methanol molar fractions (xMeOH) in water and the resulting linear relationship between CMC and methanol concentration was used to mathematically extrapolate to a predicted CMC at xMeOH = 0. Using this technique, the CMC value for the novel gemini surfactant was predicted to be 0.037 ± 0.004 mM. This extrapolation technique was also validated with surfactant standards.
ITC was also used to investigate the binding thermodynamics of polyplex formation with polycations and DNA. The imidazolium-containing and trehalose-based polycations were both found to have endothermic, entropically driven binding with DNA, while the adenine-containing polycation exhibited exothermic DNA binding. In addition, ITC was also used to confirm the stoichiometric binding ratio of linear polyethylenimine and DNA polyplexes as determined by a novel NMR method. Dynamic light scattering (DLS) and zeta potential measurements were also performed to determine the size and surface charge of polyplexes. Circular dichroism (CD) and FTIR spectroscopies provided information regarding the structural changes that may occur in the DNA upon complexation with polymers. UV-Vis thermal curves indicated that polyplexes exhibit a greater thermal stability than DNA by itself.
Variable temperature FTIR spectroscopy was used to quantitatively compare the hydrogen bonding behavior of multi-walled carbon nanotube (MWCNT)-polyurethane composites. Spectra were collected from 35 to 185 deg C for samples containing various weight percent loadings of MWCNTs with different hydrogen bonding surface functionalities. Peak fitting analysis was performed in the carbonyl-stretching region for each sample, and the hydrogen-bonding index (Rindex) was reported. Rindex values were used to quantitatively compare all of the composite samples in regards to temperature effects, weight percent loadings of MWCNTs, and the different functionalizations. In general, higher weight percent loadings of the MWCNTs resulted in greater Rindex values and increased hydrogen bond dissociation temperatures. In addition, at 5 and 10 wt% loadings the initial Rindex values displayed a trend that tracked well with the increasing hydrogen bonding capacity of the various surface functionalities. / Ph. D.
|
Page generated in 0.0891 seconds