• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da emulsão precursora no encapsulamento de óleo de linhaça e adição das microcápsulas em uma tinta a fim de torná-la autorreparadora. / Study of the precursor emulsion in encapsulation of linseed oil and doping the microcapsules into a paint in order to make it self-healing.

Corrêa, Bruna Barros de Mattos 16 February 2017 (has links)
A corrosão nos materiais metálicos causa sérias perdas financeiras e impactos ambientais. Apesar de eficientes, os revestimentos orgânicos podem gerar fissuras com o tempo, propiciando locais favoráveis à corrosão. Diante disso, o conceito de autorreparação em revestimentos tem sido estudado, para que este tipo de dano seja minimizado, sem necessitar da intervenção humana. O método de encapsulamento de formadores de filme em microcápsulas poliméricas é bastante utilizado nos sistemas de autorregeneração. Neste trabalho, estudou-se o processo de emulsificação do óleo de linhaça, etapa determinante para a obtenção das microcápsulas, que serão posteriormente aditivadas em um primer de epóxi base água. Inicialmente, foi necessário aperfeiçoar o preparo da emulsão, analisando-se para isso três tipos diferentes de tensoativos em termos de propriedades e composições. Foi feito um planejamento estatístico no qual se adotou o modelo de projeto fatorial completo para cada um dos tensoativos, onde os fatores analisados foram a variação da fração mássica do tensoativo, a aplicabilidade do ultrassom ou dispersor Ultra-Turrax® e a adição ou não de cloreto de sódio. O pequeno número de ensaios envolvidos e a simplicidade para se analisar e interpretar os dados justificam a escolha deste modelo. As variáveis resposta foram a determinação do diâmetro médio volumétrico das gotículas e a medida do potencial zeta das emulsões para analisar a estabilidade das mesmas. Além disso, observou-se a forma, tamanho e característica das gotículas com o auxílio de um microscópio óptico. A estabilidade da emulsão também foi avaliada pela observação e registro fotográfico da separação de fases, depois de certo tempo em repouso, em um tubo de ensaio. Após a determinação do melhor tensoativo e condições de preparo da emulsão na obtenção das microcápsulas, estas foram obtidas e adicionadas no primer e o mesmo foi aplicado sobre corpos de prova de aço carbono. O efeito de autorreparação proporcionado pela ruptura das microcápsulas ao se provocar um defeito foi avaliado pelas técnicas de espectroscopia de impedância eletroquímica (EIS), técnica de varredura com eletrodo vibratório (SVET) e pelo ensaio acelerado de corrosão em câmara de névoa salina (SSC). As microcápsulas foram caracterizadas por microscopia óptica e microscopia eletrônica de varredura (SEM). / The corrosion of metallic materials causes serious financial losses and environmental impacts. Although efficient, organic coatings may generate cracks over time, generating potential sites for corrosion. Hence, the self-healing concept on coatings has been studied in order to minimize this type of damage, without requiring human intervention. The encapsulation method of film formers in polymeric microcapsules is widely used in self-healing systems. In this study, the emulsification process of linseed oil was investigated, since it is a determining step to obtain the microcapsules that will later be doped in a water based epoxy primer. Initially, it was necessary to improve the emulsion preparation, by analyzing three types of surfactants with different properties and compositions. A statistical planning adopting the full factorial design model was conducted for each of the surfactants, in which the factors considered were the variation of the weight fraction of surfactant, and the use or not of ultrasound, Ultra-Turrax® disperser and sodium chloride. The small number of trials involved and the simplicity to analyze and interpret the data justify the choice of this statistical model. The response variables were the determination of the droplet volumetric mean diameter and the measurement of the zeta potential of the emulsions to assess its stability. Moreover, the shape and characteristics of the droplets were observed with the aid of an optical microscope. The emulsion stability was also evaluated by observation and photographic register of phase separation after some rest time in a test tube. After determining the best surfactant and conditions for the emulsification to obtain the microcapsules, they were produced and added to the primer, which was applied on carbon steel specimens. The self-healing effect provided by the rupture of the microcapsules after an intentional defect was evaluated by electrochemical impedance spectroscopy (EIS), scanning vibrating electrode technique (SVET) and accelerated corrosion tests in a salt spray chamber (SSC). The microcapsules were characterized by optical and scanning electron microscopes (SEM).
2

Estudo da emulsão precursora no encapsulamento de óleo de linhaça e adição das microcápsulas em uma tinta a fim de torná-la autorreparadora. / Study of the precursor emulsion in encapsulation of linseed oil and doping the microcapsules into a paint in order to make it self-healing.

Bruna Barros de Mattos Corrêa 16 February 2017 (has links)
A corrosão nos materiais metálicos causa sérias perdas financeiras e impactos ambientais. Apesar de eficientes, os revestimentos orgânicos podem gerar fissuras com o tempo, propiciando locais favoráveis à corrosão. Diante disso, o conceito de autorreparação em revestimentos tem sido estudado, para que este tipo de dano seja minimizado, sem necessitar da intervenção humana. O método de encapsulamento de formadores de filme em microcápsulas poliméricas é bastante utilizado nos sistemas de autorregeneração. Neste trabalho, estudou-se o processo de emulsificação do óleo de linhaça, etapa determinante para a obtenção das microcápsulas, que serão posteriormente aditivadas em um primer de epóxi base água. Inicialmente, foi necessário aperfeiçoar o preparo da emulsão, analisando-se para isso três tipos diferentes de tensoativos em termos de propriedades e composições. Foi feito um planejamento estatístico no qual se adotou o modelo de projeto fatorial completo para cada um dos tensoativos, onde os fatores analisados foram a variação da fração mássica do tensoativo, a aplicabilidade do ultrassom ou dispersor Ultra-Turrax® e a adição ou não de cloreto de sódio. O pequeno número de ensaios envolvidos e a simplicidade para se analisar e interpretar os dados justificam a escolha deste modelo. As variáveis resposta foram a determinação do diâmetro médio volumétrico das gotículas e a medida do potencial zeta das emulsões para analisar a estabilidade das mesmas. Além disso, observou-se a forma, tamanho e característica das gotículas com o auxílio de um microscópio óptico. A estabilidade da emulsão também foi avaliada pela observação e registro fotográfico da separação de fases, depois de certo tempo em repouso, em um tubo de ensaio. Após a determinação do melhor tensoativo e condições de preparo da emulsão na obtenção das microcápsulas, estas foram obtidas e adicionadas no primer e o mesmo foi aplicado sobre corpos de prova de aço carbono. O efeito de autorreparação proporcionado pela ruptura das microcápsulas ao se provocar um defeito foi avaliado pelas técnicas de espectroscopia de impedância eletroquímica (EIS), técnica de varredura com eletrodo vibratório (SVET) e pelo ensaio acelerado de corrosão em câmara de névoa salina (SSC). As microcápsulas foram caracterizadas por microscopia óptica e microscopia eletrônica de varredura (SEM). / The corrosion of metallic materials causes serious financial losses and environmental impacts. Although efficient, organic coatings may generate cracks over time, generating potential sites for corrosion. Hence, the self-healing concept on coatings has been studied in order to minimize this type of damage, without requiring human intervention. The encapsulation method of film formers in polymeric microcapsules is widely used in self-healing systems. In this study, the emulsification process of linseed oil was investigated, since it is a determining step to obtain the microcapsules that will later be doped in a water based epoxy primer. Initially, it was necessary to improve the emulsion preparation, by analyzing three types of surfactants with different properties and compositions. A statistical planning adopting the full factorial design model was conducted for each of the surfactants, in which the factors considered were the variation of the weight fraction of surfactant, and the use or not of ultrasound, Ultra-Turrax® disperser and sodium chloride. The small number of trials involved and the simplicity to analyze and interpret the data justify the choice of this statistical model. The response variables were the determination of the droplet volumetric mean diameter and the measurement of the zeta potential of the emulsions to assess its stability. Moreover, the shape and characteristics of the droplets were observed with the aid of an optical microscope. The emulsion stability was also evaluated by observation and photographic register of phase separation after some rest time in a test tube. After determining the best surfactant and conditions for the emulsification to obtain the microcapsules, they were produced and added to the primer, which was applied on carbon steel specimens. The self-healing effect provided by the rupture of the microcapsules after an intentional defect was evaluated by electrochemical impedance spectroscopy (EIS), scanning vibrating electrode technique (SVET) and accelerated corrosion tests in a salt spray chamber (SSC). The microcapsules were characterized by optical and scanning electron microscopes (SEM).
3

Obtenção de microcápsulas poliméricas contendo um agente formador de filme em seu núcleo para o desenvolvimento de revestimentos autorreparadores. / Development of polymeric microcapsules containing a film-forming agent to design self-healing coatings.

Cotting, Fernando 19 October 2017 (has links)
A aplicação de uma ou mais camadas de tinta sobre as superfícies metálicas é a maneira mais comum e eficaz de proteger os substratos metálicos contra o fenômeno da corrosão. No entanto, os sistemas de pintura podem vir a falhar precocemente por diferentes motivos, causando um ataque corrosivo inesperado no metal a ser protegido. Por esta razão, o processo de repintura em estruturas metálicas é realizado frequentemente para garantir a integridade da estrutura pintada e aumentar sua vida útil. Como o processo de repintura gera impactos econômicos e ambientais, sistemas de pintura capazes de sofrerem uma reparação sem a necessidade de uma intervenção humana, precisam ser desenvolvidos. O encapsulamento de agentes de reparação, com propriedades de formação de filme, em microcápsulas poliméricas é uma excelente alternativa para que os sistemas de pintura se autorreparem, aumentando os intervalos de repintura. Após o processo de encapsulamento, as microcápsulas contendo o agente de reparação são incorporadas na preparação da tinta, para que o sistema de pintura seja aplicado sobre a estrutura metálica. Este tipo de aditivação confere ao revestimento a propriedade de autorreparação, pois quando o sistema de pintura é danificado as microcápsulas são rompidas e liberam o agente de reparação no local danificado, protegendo novamente o substrato metálico. Neste trabalho foi desenvolvido um sistema autorreparador monocomponente, através do microencapsulamento de uma resina a base de éster de epóxi, pelo método de polimerização in-situ. Também foi desenvolvido um sistema autorreparador bicomponente, através do microencapsulamento de uma resina a base de epóxi, pelo método de emulsão e polimerização in-situ de ureia-formaldeído-melamina e do seu endurecedor a base de poliamida, pelo método de extração de solvente em paredes de poliestireno. Foi realizado um planejamento estatístico para estudar a emulsão precursora das microcápsulas de poli(ureia-formaldeído-melamina) contendo o sistema monocomponente, onde foram estudados: o tipo e a velocidade de agitação, a presença de cloreto de sódio na formulação, o uso de uma sonda ultrassônica após a etapa de dispersão, a concentração de tensoativo na formulação e o tensoativo utilizado. Como variáveis de resposta foram determinadas: a estabilidade visual das emulsões e o diâmetro das gotículas formadas. A melhor condição de emulsificação determinada foi utilizada para a obtenção das microcápsulas de poli(ureia-formaldeídomelamina) contendo a resina éster de epóxi e das microcápsulas de poli(ureiaformaldeído-melamina) contento a resina epóxi. Entre as condições de emulsificação estudadas, apenas a condição utilizando o tensoativo goma arábica possibilitou a obtenção das microcápsulas de poli(ureia-formaldeído-melamina) na faixa de diâmetro desejada. O método escolhido para o encapsulamento do endurecedor possibilitou a obtenção de microcápsulas de poliestireno, porém com uma baixa capacidade de armazenamento. A liberação dos agentes de reparação encapsulados foi observada pela microscopia óptica e comprovada pela técnica de espectroscopia na região do infravermelho (FTIR) e pela técnica de espectroscopia Raman. Os aditivos autorreparadores desenvolvidos (mono e bicomponente) foram adicionados separadamente em uma tinta epóxi, nas proporções mássicas em base seca de 10 e 15 %. O sistema de pintura foi aplicado em um esquema de três camadas e o aditivo de autorreparação foi incorporado na primeira e/ou segunda camada aplicada. O sistema de pintura contendo o aditivo autorreparador monocomponente apresentou um aspecto visual melhor do que o sistema de pintura contendo o aditivo autorreparador bicomponente, porém o sistema bicomponente forneceu melhores propriedades de aderência, de impermeabilidade, anticorrosivas e de autorreparação à tinta aditivada. As medidas com as técnicas eletroquímicas de espectroscopia de impedância eletroquímica (EIE) e de varredura com eletrodo vibratório (SVET) comprovaram que os dois aditivos desenvolvidos proporcionaram o efeito autorreparador aos sistemas de pintura aditivados, quando estes foram danificados mecanicamente com uma microbroca ou com um estilete. Ensaios acelerados de corrosão em câmara de névoa salina e ensaios de exposição ao intemperismo natural mostraram que os aditivos desenvolvidos promoveram uma proteção adicional ao aço carbono, quando o sistema de pintura foi danificado mecanicamente. / The application of one or more coating layers on the metallic surfaces is the most common and effective way to protect metallic substrates against corrosion. Nevertheless, the coating layer may fail early for different reasons, leading to an unexpected corrosive attack on the protected metal. For this reason, the coating repair process is performed to ensure the integrity during the service life of the coated metallic structures. Due to the fact that coating repair process generates economic and environmental impacts; there is a great need for the development of systems capable to repair themselves, without human intervention. The encapsulation of repairing agents, with film forming properties, in polymeric microcapsules is an excellent alternative to the coating self-repair, decreasing the coating repair process frequency. After the encapsulation process, the microcapsules containing the repair agent are incorporated into the paint preparation and the coating system could be applied normally to the metallic surface. This kind of additivation confers to the coating the self-healing property, because when the coating system is damaged the microcapsules suffers a rupture and release the repair agent into the damaged site, protecting the metallic substrate from corrosion. In this work, a mono-component self-healing system was developed, through the microencapsulation of an epoxy ester resin, by the in-situ polymerization method. A bi-component self-healing system was also developed, by the microencapsulation of an epoxy resin, through the emulsion and in-situ polymerization method and by the microencapsulation of a polyamide hardener, by the double emulsion and solvent extraction method. A factorial design was developed to study the precursor emulsion of the poly (urea-formaldehyde-melamine) microcapsules containing the monocomponent system, where the studied factors were: the type and speed of the agitation, the presence of sodium chloride in the formulation, the use of an ultrasonic probe after the emulsification, the surfactant type and concentration. The analyzed response variables were: the visual stability of the emulsions and the mean diameter of the formed droplets. The best obtained emulsification conditions were employed to produce the poly(urea-formaldehyde-melamine) microcapsules containing the epoxy ester resin and poly(urea-formaldehyde-melamine) microcapsules containing the epoxy resin. Among the studied emulsification conditions, only using arabic gum surfactant the poly (urea-formaldehyde-melamine) microcapsules were obtained. The selected method for the hardener encapsulation was efficient to obtain polystyrene microcapsules, but with low loading capacity. The release of the encapsulated repair agents was observed by optical microscopy and confirmed by infrared spectroscopy (FTIR) technique and Raman spectroscopy technique. The developed self-healing additives (mono and bicomponent) were added separately in an epoxy commercial coating, using the dry mass ratios 10% and 15 %. The coating system was applied in a three layer coating system and the self-healing additive was incorporated into the first and/or second layer. The coated samples containing the mono-component additive had a better visual appearance than the bi-component additive system; nevertheless the bi-component system provided better adhesion, impermeability, anti-corrosion and self-healing properties to the doped coating. The electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET) measurements proved that the two developed additives provided self-healing properties to the doped coating systems, when they were mechanically damaged with a micro drill or a blade. Accelerated corrosion tests in the salt spray chamber and natural atmospheric corrosion tests showed that the developed additives provided an additional protection to the carbon steel, when the coating system has been mechanically damaged.
4

Obtenção de microcápsulas poliméricas contendo um agente formador de filme em seu núcleo para o desenvolvimento de revestimentos autorreparadores. / Development of polymeric microcapsules containing a film-forming agent to design self-healing coatings.

Fernando Cotting 19 October 2017 (has links)
A aplicação de uma ou mais camadas de tinta sobre as superfícies metálicas é a maneira mais comum e eficaz de proteger os substratos metálicos contra o fenômeno da corrosão. No entanto, os sistemas de pintura podem vir a falhar precocemente por diferentes motivos, causando um ataque corrosivo inesperado no metal a ser protegido. Por esta razão, o processo de repintura em estruturas metálicas é realizado frequentemente para garantir a integridade da estrutura pintada e aumentar sua vida útil. Como o processo de repintura gera impactos econômicos e ambientais, sistemas de pintura capazes de sofrerem uma reparação sem a necessidade de uma intervenção humana, precisam ser desenvolvidos. O encapsulamento de agentes de reparação, com propriedades de formação de filme, em microcápsulas poliméricas é uma excelente alternativa para que os sistemas de pintura se autorreparem, aumentando os intervalos de repintura. Após o processo de encapsulamento, as microcápsulas contendo o agente de reparação são incorporadas na preparação da tinta, para que o sistema de pintura seja aplicado sobre a estrutura metálica. Este tipo de aditivação confere ao revestimento a propriedade de autorreparação, pois quando o sistema de pintura é danificado as microcápsulas são rompidas e liberam o agente de reparação no local danificado, protegendo novamente o substrato metálico. Neste trabalho foi desenvolvido um sistema autorreparador monocomponente, através do microencapsulamento de uma resina a base de éster de epóxi, pelo método de polimerização in-situ. Também foi desenvolvido um sistema autorreparador bicomponente, através do microencapsulamento de uma resina a base de epóxi, pelo método de emulsão e polimerização in-situ de ureia-formaldeído-melamina e do seu endurecedor a base de poliamida, pelo método de extração de solvente em paredes de poliestireno. Foi realizado um planejamento estatístico para estudar a emulsão precursora das microcápsulas de poli(ureia-formaldeído-melamina) contendo o sistema monocomponente, onde foram estudados: o tipo e a velocidade de agitação, a presença de cloreto de sódio na formulação, o uso de uma sonda ultrassônica após a etapa de dispersão, a concentração de tensoativo na formulação e o tensoativo utilizado. Como variáveis de resposta foram determinadas: a estabilidade visual das emulsões e o diâmetro das gotículas formadas. A melhor condição de emulsificação determinada foi utilizada para a obtenção das microcápsulas de poli(ureia-formaldeídomelamina) contendo a resina éster de epóxi e das microcápsulas de poli(ureiaformaldeído-melamina) contento a resina epóxi. Entre as condições de emulsificação estudadas, apenas a condição utilizando o tensoativo goma arábica possibilitou a obtenção das microcápsulas de poli(ureia-formaldeído-melamina) na faixa de diâmetro desejada. O método escolhido para o encapsulamento do endurecedor possibilitou a obtenção de microcápsulas de poliestireno, porém com uma baixa capacidade de armazenamento. A liberação dos agentes de reparação encapsulados foi observada pela microscopia óptica e comprovada pela técnica de espectroscopia na região do infravermelho (FTIR) e pela técnica de espectroscopia Raman. Os aditivos autorreparadores desenvolvidos (mono e bicomponente) foram adicionados separadamente em uma tinta epóxi, nas proporções mássicas em base seca de 10 e 15 %. O sistema de pintura foi aplicado em um esquema de três camadas e o aditivo de autorreparação foi incorporado na primeira e/ou segunda camada aplicada. O sistema de pintura contendo o aditivo autorreparador monocomponente apresentou um aspecto visual melhor do que o sistema de pintura contendo o aditivo autorreparador bicomponente, porém o sistema bicomponente forneceu melhores propriedades de aderência, de impermeabilidade, anticorrosivas e de autorreparação à tinta aditivada. As medidas com as técnicas eletroquímicas de espectroscopia de impedância eletroquímica (EIE) e de varredura com eletrodo vibratório (SVET) comprovaram que os dois aditivos desenvolvidos proporcionaram o efeito autorreparador aos sistemas de pintura aditivados, quando estes foram danificados mecanicamente com uma microbroca ou com um estilete. Ensaios acelerados de corrosão em câmara de névoa salina e ensaios de exposição ao intemperismo natural mostraram que os aditivos desenvolvidos promoveram uma proteção adicional ao aço carbono, quando o sistema de pintura foi danificado mecanicamente. / The application of one or more coating layers on the metallic surfaces is the most common and effective way to protect metallic substrates against corrosion. Nevertheless, the coating layer may fail early for different reasons, leading to an unexpected corrosive attack on the protected metal. For this reason, the coating repair process is performed to ensure the integrity during the service life of the coated metallic structures. Due to the fact that coating repair process generates economic and environmental impacts; there is a great need for the development of systems capable to repair themselves, without human intervention. The encapsulation of repairing agents, with film forming properties, in polymeric microcapsules is an excellent alternative to the coating self-repair, decreasing the coating repair process frequency. After the encapsulation process, the microcapsules containing the repair agent are incorporated into the paint preparation and the coating system could be applied normally to the metallic surface. This kind of additivation confers to the coating the self-healing property, because when the coating system is damaged the microcapsules suffers a rupture and release the repair agent into the damaged site, protecting the metallic substrate from corrosion. In this work, a mono-component self-healing system was developed, through the microencapsulation of an epoxy ester resin, by the in-situ polymerization method. A bi-component self-healing system was also developed, by the microencapsulation of an epoxy resin, through the emulsion and in-situ polymerization method and by the microencapsulation of a polyamide hardener, by the double emulsion and solvent extraction method. A factorial design was developed to study the precursor emulsion of the poly (urea-formaldehyde-melamine) microcapsules containing the monocomponent system, where the studied factors were: the type and speed of the agitation, the presence of sodium chloride in the formulation, the use of an ultrasonic probe after the emulsification, the surfactant type and concentration. The analyzed response variables were: the visual stability of the emulsions and the mean diameter of the formed droplets. The best obtained emulsification conditions were employed to produce the poly(urea-formaldehyde-melamine) microcapsules containing the epoxy ester resin and poly(urea-formaldehyde-melamine) microcapsules containing the epoxy resin. Among the studied emulsification conditions, only using arabic gum surfactant the poly (urea-formaldehyde-melamine) microcapsules were obtained. The selected method for the hardener encapsulation was efficient to obtain polystyrene microcapsules, but with low loading capacity. The release of the encapsulated repair agents was observed by optical microscopy and confirmed by infrared spectroscopy (FTIR) technique and Raman spectroscopy technique. The developed self-healing additives (mono and bicomponent) were added separately in an epoxy commercial coating, using the dry mass ratios 10% and 15 %. The coating system was applied in a three layer coating system and the self-healing additive was incorporated into the first and/or second layer. The coated samples containing the mono-component additive had a better visual appearance than the bi-component additive system; nevertheless the bi-component system provided better adhesion, impermeability, anti-corrosion and self-healing properties to the doped coating. The electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET) measurements proved that the two developed additives provided self-healing properties to the doped coating systems, when they were mechanically damaged with a micro drill or a blade. Accelerated corrosion tests in the salt spray chamber and natural atmospheric corrosion tests showed that the developed additives provided an additional protection to the carbon steel, when the coating system has been mechanically damaged.

Page generated in 0.4543 seconds