• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Multi-function Polymeric Nanoparticles for Theranostic Application / Design av multifunktionella polymera nanopartiklar för teranostisk tillämpning

Yamani, Zuhoor January 2019 (has links)
Block copolymer nanoparticles (NPs) have gained great attention among researcher for various medical application mainly due to their extraordinary optical, chemical, and biological properties. The current thesis presents design of multifunctional polymeric NPs for imaging and drug delivery system (DDS) with an in-vitro study of their participation in drug release and cell viability. The NPs were synthesized using reversible addition chain fragmentation transfer (RAFT)-mediated emulsion polymerization via polymerization induce self-assembly (PISA) approach. The environment-friendly emulsion polymerization process of n-buytl acrylate (n-BA) in water is highly efficient. The process produced uniform NPs which would have control over the particle size and molecular weight of the compound. Herein we report a novel simultaneous encapsulation of camptothecin (CPT) and Nile red (NR) into poly(ethylene glycol) methyl ether methacrylate-co-N-hydroxyethyl acrylamide-b-poly n-buytlacrylate (PEGA-co-HEAA)-b-P(n-BA) during the particles formation with a small particle size of 66 nm, high conversion ~80% and encapsulation efficiency of ~50%. The In vitro drug release of the CPT from the NPs exhibited an initial burst (70-80%) within 6h. cell viability was evaluated for the NPs against RAW 264.7 cell line, which indicated the designed NPs are biocompatible and not toxic.

Page generated in 0.1005 seconds