• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coprimeness in multidimensional system theory and symbolic computation

Johnson, Dean S. January 1993 (has links)
During the last twenty years the theory of linear algebraic and high-order differential equation systems has been greatly researched. Two commonly used types of system description are the so-called matrix fraction description (MFD) and the Rosenbrock system matrix (RSM); these are defined by polynomial matrices in one indeterminate. Many of the system's physical properties are encoded as algebraic properties of these polynomial matrices. The theory is well developed and the structure of such systems is well understood. Analogues of these 1-D realisations can be set up for many dimensional systems resulting in polynomial matrices in many indeterminates. The scarcity of detailed algebraic results for such matrices has limited the understanding of such systems.
2

Lattice Compression of Polynomial Matrices

Li, Chao January 2007 (has links)
This thesis investigates lattice compression of polynomial matrices over finite fields. For an m x n matrix, the goal of lattice compression is to find an m x (m+k) matrix, for some relatively small k, such that the lattice span of two matrices are equivalent. For any m x n polynomial matrix with degree bound d, it can be compressed by multiplying by a random n x (m+k) matrix B with degree bound s. In this thesis, we prove that there is a positive probability that L(A)=L(AB) with k(s+1)=\Theta(\log(md)). This is shown to hold even when s=0 (i.e., where B is a matrix of constants). We also design a competitive probabilistic lattice compression algorithm of the Las Vegas type that has a positive probability of success on any input and requires O~(nm^{\theta-1}B(d)) field operations.
3

Representations and transformations for multi-dimensional systems

McInerney, Simon J. January 1999 (has links)
Multi-dimensional (n-D) systems can be described by matrices whose elements are polynomial in more than one indeterminate. These systems arise in the study of partial differential equations and delay differential equations for example, and have attracted great interest over recent years. Many of the available results have been developed by generalising the corresponding results from the well known 1-D theory. However, this is not always the best approach since there are many differences between 1-D, 2-D and n-D (n > 2) polynomial matrices. This is due mainly to the underlying polynomial ring structure.
4

Lattice Compression of Polynomial Matrices

Li, Chao January 2007 (has links)
This thesis investigates lattice compression of polynomial matrices over finite fields. For an m x n matrix, the goal of lattice compression is to find an m x (m+k) matrix, for some relatively small k, such that the lattice span of two matrices are equivalent. For any m x n polynomial matrix with degree bound d, it can be compressed by multiplying by a random n x (m+k) matrix B with degree bound s. In this thesis, we prove that there is a positive probability that L(A)=L(AB) with k(s+1)=\Theta(\log(md)). This is shown to hold even when s=0 (i.e., where B is a matrix of constants). We also design a competitive probabilistic lattice compression algorithm of the Las Vegas type that has a positive probability of success on any input and requires O~(nm^{\theta-1}B(d)) field operations.
5

Polynomial Matrix Decompositions : Evaluation of Algorithms with an Application to Wideband MIMO Communications

Brandt, Rasmus January 2010 (has links)
The interest in wireless communications among consumers has exploded since the introduction of the "3G" cell phone standards. One reason for their success is the increasingly higher data rates achievable through the networks. A further increase in data rates is possible through the use of multiple antennas at either or both sides of the wireless links. Precoding and receive filtering using matrices obtained from a singular value decomposition (SVD) of the channel matrix is a transmission strategy for achieving the channel capacity of a deterministic narrowband multiple-input multiple-output (MIMO) communications channel. When signalling over wideband channels using orthogonal frequency-division multiplexing (OFDM), an SVD must be performed for every sub-carrier. As the number of sub-carriers of this traditional approach grow large, so does the computational load. It is therefore interesting to study alternate means for obtaining the decomposition. A wideband MIMO channel can be modeled as a matrix filter with a finite impulse response, represented by a polynomial matrix. This thesis is concerned with investigating algorithms which decompose the polynomial channel matrix directly. The resulting decomposition factors can then be used to obtain the sub-carrier based precoding and receive filtering matrices. Existing approximative polynomial matrix QR and singular value decomposition algorithms were modified, and studied in terms of decomposition quality and computational complexity. The decomposition algorithms were shown to give decompositions of good quality, but if the goal is to obtain precoding and receive filtering matrices, the computational load is prohibitive for channels with long impulse responses. Two algorithms for performing exact rational decompositions (QRD/SVD) of polynomial matrices were proposed and analyzed. Although they for simple cases resulted in excellent decompositions, issues with numerical stability of a spectral factorization step renders the algorithms in their current form purposeless. For a MIMO channel with exponentially decaying power-delay profile, the sum rates achieved by employing the filters given from the approximative polynomial SVD algorithm were compared to the channel capacity. It was shown that if the symbol streams were decoded independently, as done in the traditional approach, the sum rates were sensitive to errors in the decomposition. A receiver with a spatially joint detector achieved sum rates close to the channel capacity, but with such a receiver the low complexity detector set-up of the traditional approach is lost. Summarizing, this thesis has shown that a wideband MIMO channel can be diagonalized in space and frequency using OFDM in conjunction with an approximative polynomial SVD algorithm. In order to reach sum rates close to the capacity of a simple channel, the computational load becomes restraining compared to the traditional approach, for channels with long impulse responses.

Page generated in 0.0482 seconds