• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings

Chapman, Scott T. (Scott Thomas) 05 1900 (has links)
Let K be any field and Q be the rationals. Define K^1[X] = {f(X) e K[X]| the coefficient of X in f(X) is zero} and Q^1β[X] = {f(X) e Q[X]| the coefficent of β1(X) in the binomial expansion of f(X) is zero}, where {β1(X)}^∞ i=0 are the well-known binomial polynomials. In this work, I establish the following results: K^1[X] and Q^1β[X] are one-dimensional, Noetherian, non-Prüfer domains with the two-generator property on ideals. Using the unique factorization structure of the overrings K[X] and Q[X], the nonprincipal ideal structures of both rings are characterized, and from this characterization, necessary and sufficient conditions are found for a nonprincipal ideal to be invertible. The nonprincipal invertible ideals are then characterized in terms of the coefficients of the generators, and an explicit formula for the inverse of any proper invertible ideal is found. Finally, the class groups of both rings are shown to be torsion free abelian groups. Let n be any nonnegative integer. Results similar to the above are found in the generalizations of these two rings, K^n[X] and q^nβ[X], where the coefficients on the first n nonconstant basis elements are zero. For the domains K^1[X] and Q^1β[X], the property of strong two-generation is explored in detail and the following results are established: 1. K^1[X] and Q^1β[X] are not strongly two-generated, 2. In either ring, any polynomial with a constant term, or of degree two or three is a strong two-generator. 3. In K^1[X] any polynomial divisible by X^4 is not a strong two-generator, 4. An ideal I in K^1[X] or Q^1β[X] is strongly two-generated if and only if it is invertible.

Page generated in 0.089 seconds