Spelling suggestions: "subject:"polyoxetanes"" "subject:"polyuretane""
1 |
POLYURETHANE-BASED POLYMER SURFACE MODIFIERS WITH ALKYL AMMONIUM CO-POLYOXETANE SOFT BLOCKS: REACTION ENGINEERING, SURFACE MORPHOLOGY AND ANTIMICROBIAL BEHAVIORBrunson, Kennard 04 August 2010 (has links)
Concentrating quaternary (positive) charge at polymer surfaces is important for applications including layer-by-layer polyelectrolyte deposition and antimicrobial coatings. Prior techniques to introduce quaternary charge to the surface involve grafting of quaternary ammonium moieties to a substrate or using polyurethanes with modified hard segments however there are impracticalities involved with these techniques. In the case of the materials discussed, the quaternary charge is introduced via polyurethane based polymer surface modifiers (PSMs) with quaternized soft segments. The particular advantage to this method is that it utilizes the intrinsic phase separation between the hard and soft segments of polyurethanes. This phase separation results in the surface concentration of the soft segments. Another advantage is that unlike grafting, where modification has to take place after device fabrication, these PSMs can be incorporated with the matrix material during device fabrication. The soft segments of these quaternized polyurethanes are produced via ring opening copolymerization of oxetane monomers which possess either a trifluoroethoxy (3FOx) side chains or a quaternary ammonium side chain (C12). These soft segments are subsequently reacted with 4,4’-(methylene bis (p-cyclohexyl isocyanate)), HMDI and butanediol (BD) to form the PSM. It was initially intended to increase the concentration of quaternary ammonium charge by increasing PSM soft segment molecular weight. Unexpectedly, produced blends with surface microscale phase separation. This observation prompted further investigation of the effect of PSM soft segment molecular weight on phase separation in PSM-base polyurethane blends and the subsequent effects of this phase separation on the biocidal activity. Analysis of the surface morphology via tapping mode atomic force microscopy (TMAFM) and scanning electron microscopy (SEM) revealed varying complexities in surface morphology as a function of the PSM soft segment molecular weight and initial annealing temperature. Many of these features include what are described as nanodots (100-300 nm), micropits (0.5-2 um) and micropeaks (1-10 um). It was also observed that surface morphology continued to coarsen with time and that the larger features were typically observed in blends containing PSMs with low molecular weight soft segments. This appearance of surface morphological feature correlates with decreased biocidal activity of the PSM blends, that is, the PSM blends exhibit little to no activity upon development of phase separated features. A model has been developed for phase separation and concomitant reduction of surface quaternary charge. This model points the way to future work that will stabilize surface charge and provide durability of surface modification.
|
2 |
NOVEL SOFT SURFACES WITH INTERESTING SURFACE AND BULK MORPHOLOGYChakrabarty, Souvik 29 June 2012 (has links)
The goal of this research is to cover a broad set of scientific investigations of elastomeric materials based on polydimethylsiloxane (PDMS) and poly((3,3,3-trifluoroethoxymethyl)methyloxetane) diol. The scope of study covers five areas, well correlated with each other. The first study investigates the near surface morphology of condensation cured PDMS as a function of increasing the amount of siliceous phase. The appearance, disappearance and reappearance of untreated fumed silica nanoparticles at the PDMS near surface and their correlation with the volume fraction of siliceous phase have been studied. This research with PDMS nanocomposites has led to the development of an alternative route for improving mechanical strength of PDMS elastomers, conventionally known to have weak mechanical properties. The second study involves synthesis of a triblock copolymer comprising of four mutually immiscible phases, namely, soft segments comprising of fluorous and silicone domains, a diisocyanate hard segment and a glassy siliceous phase. Structure-property relationship has been established with an investigation of the interesting surface and bulk morphology. The highly improved mechanical strength of these soft materials is noteworthy. The dominance of silicone soft block at the triblock near surface has led to the third study which investigates their potential non-adhesive or abhesive characteristic in both a laboratory scale and in a marine environment. The peak removal stress and the removal energy associated with the detachment of a rigid object from the surface of these triblock copolymers have been measured. Results obtained from laboratory scale experiments have been verified by static immersion tests performed in the marine environment, involving the removal of adhered soft and hard fouling organisms. Gaining insights on the characteristics of an easy release surface, namely low surface energy and a low near surface modulus, a new way for controlling the near surface composition for elastomeric coatings have been developed. This technique involves an elastomer end-capped with a siliceous crosslinking agent and a tough, linear polyurethane. The basic concept behind the hybrid compositions is to develop a coating suitable for foul release applications, having a low energy surface, low surface modulus but good bulk mechanical strength. Henceforth, the fourth study deals with synthesis and characterization of the hybrid polymers over a wide range of composition and investigates their foul release characteristic in laborartory scale experiments. In our final study, attempts have been made in generating a silicone coating with antimicrobial property. A quaternary alkylammonium in different weight percents have been incorporated into a conventional, condensation cured polydimethylsiloxane (PDMS) elastomer. Antimicrobial assay has been performed on these modified silicone coatings to assess their biocidal activity against strains of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Surface accessibility of quaternary charges has been quantified by measuring the streaming potential of a modified coating. An effort has been made in improving the mechanical strength of the weak PDMS elastomers by adding treated fumed silica nanoparticles as reinforcements. The effect of adding fillers on the mechanical property (tensile), surface concentration of quaternary charge and on the biocidal activity of a representative sample has been investigated.
|
3 |
Novel Fluorous Hybrid Surface Modification Characterized by Wetting Dynamics, Morphology and NanomechanicsNair, Sithara 01 January 2012 (has links)
The surface response of a polymer substrate to external stimuli such as initial wetting is controlled by the outermost molecular layer. Thus, changes on the nanoscale may be engaged to control macroscale wetting behavior. Our work has predominantly focused on surface modification of conventional polyurethane coatings (HMDI-BD-PTMO). Studies on network constrained phase separation and facile polydimethylsiloxane surface functionalization led to the discovery of a simpler one-step and more general approach to functional polymer surfaces that we have designated as “Bottle-Brush Nanoglass” (BB-NG) after the two principle components: (a) a polyoxetane soft block “spine” with side chain “A” bristles and triethoxysilyl chain ends and (b) an alkoxysilane that together with BB chain ends comprise precursors to a “nanoglass”, NG phase. This paper focuses on the extent of modification for a conventional aliphatic polyurethane using a range of fluoropolyoxetane (poly(trifluoroethoxymethyl-methyl oxetane) diol) or 3F diol based modifier concentrations. Upon generating a blend of the polyurethane with the modifier, the BB-NG which is a minor constituent of the blend, phase separates to provide the topmost layer of the coating. Initial results demonstrate that the modified polymer coatings exhibit an expected increase in contact angles with water. Wetting behavior was characterized using the sessile drop technique as well as Dynamic Contact Analysis (DCA, Wilhelmy Plate). Surface composition as well as near surface topology and morphology are characterized by X-ray Photoelectron Spectroscopy (XPS) and Tapping Mode Atomic Force Microscopy (TM-AFM) respectively. Contrast in phase images reflect the surface modulus and viscoelasticity, from which physical form or compositional differences may be deduced. These characteristics have also been explored in our study by hardness tests via nanoindentation.
|
Page generated in 0.0483 seconds