• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of interface reaction between BaTiO3 and SrTiO3

Siao, Cyuan-You 05 August 2008 (has links)
The pseudo-binary system of BaTiO3-SrTiO3 ceramics offering potential applications in the electronic industry, particularly for the passive components, has been studied for its diffuse phase transition over the temperature range of +150oC and -50oC. This research concentrating on the interdiffusion between two sintered layers of such perovskite is a continuation of study, conducted by this author¡¦s group over the past years. Two-layer BaTiO3-SrTiO3 stacks were sintered at 1300oC and annealed for various time periods to investigate if and how the interdiffusion occurs across the BaTiO3-SrTiO3 interface. Optical microscopy reveals an interface layer consisting of polytitanate second phases, which appear to be large, chunky grains initially. Both results obtained from X-ray diffractometry and micro-chemical analysis using the energy-dispersive spectrometry, equipped with the scanning electron microscopy, suggest that the second phases are: Ba4Ti13O30, Ba2Ti9O20, Ba6Ti17O40 and BaTi2O5. These polytitanates are produced from the solid-state reaction between BaTiO3 and TiO2, which is left behind in the BaTiO3 layer when Ba2+ being the faster diffusion A-site cation have moved across into the SrTiO3 layer in a significantly higher content. The interface phases grow progressively to a coherent second-phase layer upon prolonged annealing for 100 h. It is revealed by the transmission electron microscopy that residual pores, similar to the Kirkendall type in the classical Cu-Zn diffusion couple, generated at ~100 £gm away from the interface and located in the BaTiO3 layer. This is attributed to the significantly different lattice diffusivities between two A-cations, i.e. Ba2+ being faster than Sr2+ by approximately three times, with A-site vacancies ( ) created in the grains of the BaTiO3 layer. Together with B-site cation vacancy ( ) and oxygen vacancy ( ), similar to the prismatic loops formed in quenched aluminium, condensation of vacancies via a reverse Schottky defect reaction has formed such Kirkendall-like pores within BaTiO3 grains. Interdiffusion has resulted in forming the solid solutions of (Ba,Sr)TiO3, with Sr2+ being solute cation, and (Sr,Ba)TiO3, with Ba2+ being solute cation, in the initial layers, respectively, and the characteristic core-shell grains responsible for the diffuse-phase transition. A mechanism of how cation diffusion produces the core-shell grains in both layers, modified from Bow (1990) and Liu (1991), is proposed.

Page generated in 0.1099 seconds