Spelling suggestions: "subject:"cooled testing""
1 |
COMPARISON OF THE GROWTH OF SHIGA TOXIN-PRODUCING ESCHERICHIA COLI (STEC) ON DIFFERENT MEDIAWang, Gaochan 26 June 2012 (has links)
No description available.
|
2 |
Robust and Equitable Public Health Screening Strategies, with Application to Genetic and Infectious DiseasesEl Hajj, Hussein Mohammad 07 June 2021 (has links)
Public health screening plays an important role in the overall healthcare system. As an example, consider newborn screening, a state-level initiative that screens newborns for life-threatening genetic disorders for which early treatment can substantially improve health outcomes. Another topical example is in the realm of infectious disease screening, e.g., screening for COVID-19.
The common features of both public health screening problems include large testing populations and resource limitations that inhibit screening efforts. Cost is a major barrier to the inclusion of genetic disorders in newborn screening, and thus screening must be both highly accurate and efficient; and for COVID-19, limited testing kits, and other shortages, have been major barriers to screening efforts. Further, for both newborn screening and infectious disease screening, equity (reducing health disparities among different sub-populations) is an important consideration.
We study the testing process design for newborn screening for genetic diseases, considering cystic fibrosis as a model disorder. Our optimization-based models take into account disease-related parameters, subject risk factors, test characteristics, parameter uncertainty, and limited testing resources so as to design equitable, accurate, and robust screening processes that classify newborns as positive or negative for cystic fibrosis. Our models explicitly consider the trade-off between false-negatives, which lead to missed diagnoses, and the required testing resources; and the trade-off between the accuracy and equity of screening. We also study the testing process design for infectious disease screening, considering COVID-19 as a model disease. Our optimization-based models account for key subject risk factors that are important to consider, including the likelihood of being disease-positive, and the potential harm that could be averted through testing and the subsequent interventions. Our objectives include the minimization of harm (through detection and mitigation) or maximization of testing coverage.
These are complex problems. We develop novel mathematical models and characterize key structural properties of optimal solutions. This, in turn, allows the development of effective and efficient algorithms that exploit these structural properties. These algorithms are either polynomial- or pseudo-polynomial-time algorithms, and are able to solve realistic-sized problems efficiently. Our case studies on cystic fibrosis screening and COVID-19 screening, based on realistic data, underscore the value of the proposed optimization-based approaches for public health screening, compared to current practices. Our findings have important implications for public policy. / Doctor of Philosophy / Public health screening plays an important role in the overall healthcare system. As an example, consider newborn screening, a state-level initiative that screens newborns for life-threatening genetic disorders for which early treatment can substantially improve health outcomes. Another topical example is in the realm of infectious disease screening, e.g., screening for COVID-19.
The common features of both public health screening problems include large testing populations and resource limitations that inhibit screening efforts. Cost is a major barrier to the inclusion of genetic disorders in newborn screening, and thus screening must be both highly accurate and efficient; and for COVID-19, limited testing kits, and other shortages, have been major barriers to screening efforts. Further, for both newborn screening and infectious disease screening, equity (reducing health disparities among different sub-populations) is an important consideration.
We study the testing process design for newborn screening for genetic diseases, considering cystic fibrosis as a model disorder. Our optimization-based models take into account disease-related parameters, subject risk factors, test characteristics, parameter uncertainty, and limited testing resources so as to design screening processes that classify newborns as positive or negative for cystic fibrosis. Our models explicitly consider the trade-off between false-negatives, which lead to missed diagnoses, and the required testing resources; and the trade-off between the accuracy and equity of screening. We also study the testing process design for infectious disease screening, considering COVID-19 as a model disease. Our optimization-based models account for key subject risk factors that are important to consider, including the likelihood of being disease-positive, and the potential harm that could be averted through testing and the subsequent interventions. Our objectives include the minimization of harm (through detection and mitigation) or maximization of testing coverage.
These are complex problems. We develop novel mathematical models and characterize key structural properties of optimal solutions. This, in turn, allows the development of effective and efficient algorithms that exploit these structural properties. Our case studies on cystic fibrosis screening and COVID-19 screening, based on realistic data, underscore the value of the proposed optimization-based approaches for public health screening, compared to current practices. Our findings have important implications for public policy.
|
3 |
Robust Post-donation Blood Screening under Limited InformationEl-Amine, Hadi 10 June 2016 (has links)
Blood products are essential components of any healthcare system, and their safety, in terms of being free of transfusion-transmittable infections, is crucial. While the Food and Drug Administration (FDA) in the United States requires all blood donations to be tested for a set of infections, it does not dictate which particular tests should be used by blood collection centers. Multiple FDA-licensed blood screening tests are available for each infection, but all screening tests are imperfectly reliable and have different costs. In addition, infection prevalence rates and several donor characteristics are uncertain, while surveillance methods are highly resource- and time-intensive. Therefore, only limited information is available to budget-constrained blood collection centers that need to devise a post-donation blood screening scheme so as to minimize the risk of an infectious donation being released into the blood supply. Our focus is on "robust" screening schemes under limited information. Toward this goal, we consider various objectives, and characterize structural properties of the optimal solutions under each objective. This allows us to gain insight and to develop efficient algorithms. Our research shows that using the proposed optimization-based approaches provides robust solutions with significantly lower expected infection risk compared to other testing schemes that satisfy the FDA requirements. Our findings have important public policy implications. / Ph. D.
|
Page generated in 0.0587 seconds