• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Mitilysin Pores by Cryo-electron Microscopy

Novakovic, Vladimir January 2023 (has links)
Pore forming toxins (PFTs) are a large group of proteins found mainly in bacteria with some exceptions found in animals. They bind and form pores in their target membranes and form pores, which leads to cell death. Among these are cholesterol-dependent cytolysins (CDC), which require the presence of cholesterol to bind target membranes. Mitilysin (Mly), a protein of interest in this project, belongs to the CDC group of pore forming toxins. It is produced by the bacterium Streptococcus mitis, a pathogen closely related to Streptococcus pneumoniae, found in human oral cavity, which causes several diseases such as Viridans Group Streptococcal (VGS) toxic shock syndrome and endocarditis. Mly is a homologue of the toxin Pneumolysin, which is produced by S. pneumoniae. However, the mechanism of pore formation is not well known. The purpose of this project is to understand the mechanism of CDC pore formation, focusing on the key amino acid residues that are responsible for transitioning from Mly pre-pore to pore state. The findings will aid in the design of inhibitors of pore formation as potential anti-bacterial drug candidates. The major goal of the project was to determine the 3-dimensional (3D) structure of assembled Mly pore. Mly is expressed in E.coli and purified by Ni-NTA affinity chromatography. Pore formation is confirmed by a hemolysis assay and negative stain-transmission electron microscopy. Mly pores are vitrified, analyzed and imaged in a cryo-electron microscope. 2D images were processed to generate a 3D density map. However, our Mly pore 3D map was incomplete due to lack of 2D projection angles resulting from preferred orientation of pore particles during sample preparation. To overcome this problem, we aim to use DNA origami, which requires His-tagged Mly. We were able to determine that His-tagged Mly retains its pore formation ability.

Page generated in 0.1074 seconds