• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 47
  • 32
  • 25
  • 9
  • 9
  • 7
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 575
  • 575
  • 84
  • 80
  • 59
  • 56
  • 52
  • 50
  • 48
  • 48
  • 47
  • 47
  • 44
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Fabrication and characterization of a porous CuO/CeO₂/Al₂O₃ biomorphic compound. / 多孔生物遺態氧化銅/氧化鈰/氧化鋁之複合物料的製作及其定性分析 / Fabrication and characterization of a porous CuO/CeO₂/Al₂O₃ biomorphic compound. / Duo kong sheng wu yi tai yang hua tong/yang hua shi/yang hua lu zhi fu he wu liao de zhi zuo ji qi ding xing fen xi

January 2009 (has links)
Chiu, Ka Lok = 多孔生物遺態氧化銅/氧化鈰/氧化鋁之複合物料的製作及其定性分析 / 趙家樂. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Abstract also in Chinese. / Chiu, Ka Lok = Duo kong sheng wu yi tai yang hua tong/yang hua shi/yang hua lu zhi fu he wu liao de zhi zuo ji qi ding xing fen xi / Zhao Jiale. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgment --- p.v / Table of contents --- p.vi / List of table captions --- p.x / List of figure captions --- p.xi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Carbon monoxide (CO) --- p.1 / Chapter 1.2 --- Production of hydrogen from methanol for fuel cell --- p.2 / Chapter 1.3 --- Catalysts for CO oxidation and methanol reforming --- p.5 / Chapter 1.4 --- Copper-based catalysts --- p.6 / Chapter 1.5 --- Mechanisms in the catalytic processes --- p.7 / Chapter 1.6 --- Synthesis of Cu-based catalysts --- p.10 / Chapter 1.7 --- Potential applications of the biomorphic CuO/CeO2/Al2O3 catalyst --- p.11 / Chapter 1.8 --- Objectives and the thesis layout --- p.12 / Chapter 1.9 --- References --- p.13 / Chapter Chapter 2 --- Methods and Instrumentation --- p.16 / Chapter 2.1 --- Sample preparations --- p.16 / Chapter 2.1.1 --- Syntheses of the biomorphic samples --- p.16 / Chapter 2.1.2 --- Syntheses of the control samples (R1 and R2) --- p.17 / Chapter 2.2 --- Characterization --- p.18 / Chapter 2.2.1 --- Scanning electron microscope (SEM) --- p.18 / Chapter 2.2.2 --- Transmission electron microscopy (TEM) --- p.19 / Chapter 2.2.3 --- X-ray powder diffractometry (XRD) --- p.20 / Chapter 2.2.4 --- Fourier transform infrared (FTIR) spectroscopy --- p.21 / Chapter 2.2.5 --- Raman scattering (RS) spectroscopy --- p.22 / Chapter 2.2.6 --- Differential thermal analysis (DTA) --- p.22 / Chapter 2.2.7 --- Thermogravimetric analysis (TGA) --- p.23 / Chapter 2.2.8 --- Gas sorption surface analysis (GSSA) --- p.24 / Chapter 2.3 --- Catalytic activity --- p.25 / Chapter 2.3.1 --- CO oxidation --- p.25 / Chapter 2.3.2 --- Partial oxidation of methanol (POMe) --- p.27 / Chapter 2.3.3 --- Steam reforming of methanol (SRMe) --- p.28 / Chapter 2.4 --- References --- p.29 / Chapter Chapter 3 --- "Results, discussions and characterization" --- p.31 / Chapter 3.1 --- Biomorphic samples --- p.31 / Chapter 3.1.1 --- Macrostructures --- p.31 / Chapter 3.1.2 --- SEM and TEM results --- p.32 / Chapter 3.1.3 --- XRD analysis and chemical compositions --- p.35 / Chapter 3.1.4 --- RS results --- p.41 / Chapter 3.1.5 --- FTIR results --- p.44 / Chapter 3.1.6 --- Thermal property --- p.46 / Chapter 3.1.7 --- Porosity analysis --- p.48 / Chapter 3.2 --- Control sample R1 --- p.52 / Chapter 3.2.1 --- Microstructures --- p.52 / Chapter 3.2.2 --- Surface area and porosity --- p.55 / Chapter 3.2.3 --- Thermal property --- p.56 / Chapter 3.2.4 --- "XRD, FTIR and RS results" --- p.58 / Chapter 3.3 --- Control sample R2 --- p.60 / Chapter 3.3.1 --- Microstructures --- p.60 / Chapter 3.3.2 --- Surface area and porosity --- p.61 / Chapter 3.3.3 --- "XRD, FTIR and RS results" --- p.62 / Chapter 3.3.4 --- Thermal property --- p.63 / Chapter 3.4 --- Formation mechanisms of the biomorphic samples --- p.64 / Chapter 3.5 --- Impacts of the Cu/Ce/Al ratios on the CuO dispersion --- p.66 / Chapter 3.6 --- Cotton biotemplate --- p.66 / Chapter 3.7 --- Formation mechanisms of R1 and R2 --- p.67 / Chapter 3.8 --- References --- p.69 / Chapter Chapter 4 --- Evaluations of Catalytic Activities --- p.71 / Chapter 4.1 --- CO oxidation --- p.71 / Chapter 4.2 --- POMe --- p.79 / Chapter 4.3 --- SRMe --- p.91 / Chapter 4.4 --- Physical properties of the biomorphic samples before and after the reactions --- p.97 / Chapter 4.5 --- Structure of the sample and its catalytic performance --- p.102 / Chapter 4.6 --- CuO dispersion and the catalytic performance --- p.103 / Chapter 4.7 --- Al2O3 and CeO2 and the catalytic performance --- p.105 / Chapter 4.8 --- Catalytic performance of the biomorphic samples and R2 --- p.108 / Chapter 4.9 --- References --- p.109 / Chapter Chapter 5 --- Conclusions and suggestions for further studies --- p.110 / Chapter 5.1 --- Conclusions --- p.110 / Chapter 5.2 --- Future works --- p.112 / Chapter 5.3 --- References --- p.114
282

Preparação e estudo de nanotubos luminescentes de hidróxidos duplos lamelares (LDH) contendo íons terras raras / Preparation and study of layered double hydroxide (LDH) nanotubes containing rare earth ions

Morais, Alysson Ferreira 15 June 2018 (has links)
Hidróxidos duplos lamelares (LDHs) são uma classe materiais lamelares com fórmula química [M_(1-x)^II M_x^III (OH)_2 ] [A^(n-)]_(x/n).yH_2 O (onde M^II e M^III são metais di e trivalentes, respectivamente) formados pelo empilhamento de camadas positivamente carregadas de hidróxidos metálicos intercaladas por espécies aniônicas A^(n-). Este trabalho descreve uma estratégia inédita para a produção de nanotubos de LDHs autossuportados (Ø 20 nm e comprimentos >= 100 nm) através da coprecipitação de Zn^(2+), Al^(3+) e Eu^(3+) em pH controlado e sua auto-organização sobre micelas cilíndricas do surfactante Plurônico® P-123. A subsequente extração destes agentes estruturantes através de lavagem com metanol resulta em uma rede de nanotubos cilíndricos, ocos e interconectados, formados pela deposição de multicamadas de hidróxidos duplos intercalados pela molécula sensibilizadora ácido benzeno-1,3,5-tricarboxílico (ácido trimésico, BTC). A combinação de Eu3+ nas camadas de hidróxidos e BTC no meio interlamelar resulta em nanotubos com propriedades luminescentes, demonstrando de maneira notável como modificações químicas e morfológicas nos LDHs podem levar ao remodelamento das suas propriedades físico-químicas e consequentemente direcionar suas aplicações de maneira desejável. / Layered double hydroxides are a class of lamellar compounds with chemical formula [M_(1-x)^II M_x^III (OH)_2 ] [A^(n-)]_(x/n).yH_2 O (with M^II and M^III being di and trivalent metals, respectively) that are formed by the stacking of positively charged mixed-valence metal hydroxide sheets intercalated by anionic species A^(n-). This work describes a new strategy for the synthesis of self-supporting mesoporous LDH nanotubes (Ø 20 nm and length >= 100 nm) by coprecipitation of Zn^(2+), Al^(3+) and Eu^(3+) around non-ionic worm-like micelles of Pluronic® P-123 in controlled pH. Subsequent extraction of the structure-directing agent with methanol results in a network of interconnected, well-defined, multi-walled and hollow cylindrical LDH nanotubes intercalated by the sensitizing ligand BTC (1,3,5-benzenetricarboxilate). The combination of Eu^(3+) in the hydroxide layers and BTC in the interlayers results in nanotubes with luminescence properties in a notable demonstration on how chemical and morphological changes in LDHs can lead to materials with tuned physico chemical properties that can be tailored towards a range of applications.
283

Modélisation et identification par inférence bayésienne de matériaux poreux acoustiques en aéronautique / Modelling and Bayesian Inference Identification of Acoustic Porous Materials in Aeronautics

Roncen, Rémi 08 November 2018 (has links)
Les travaux de thèse gravitent autour de la thématique des matériaux poreux en aéronautique, et de la prise en compte de l'incertitude sur les caractérisations réalisées. Est envisagé l'ajout de matériaux poreux au sein des cavités de liners acoustiques, matériaux constitués d'une plaque perforée et d'une cavité fonctionnant sur le principe du résonateur de Helmholtz et majoritairement utilisés dans l'industrie aéronautique. Cet ajout est réalisé avec pour objectif d'augmenter l'étendue spectrale de l'absorption acoustique de tels matériaux et d'en améliorer le fonctionnement en présence d'un fort niveau sonore et d'un écoulement rasant.Pour répondre à cette problématique générale, deux grandes pistes sont suivies. Plusieurs études sont d'abord menées sur des matériaux poreux seuls, afin de déterminer les propriétés intrinsèques de leur micro-géométrie, nécessaires à l'utilisation des modèles semi-phénoménologiques de fluide équivalent adoptés par la suite. Pour cela, un outil statistique d'inférence Bayésienne est utilisé afin d'extraire l'information sur ces propriétés, contenue dans les signaux réfléchis ou transmis par un matériau poreux, et ce dans trois régimes fréquentiels distincts. De plus, une extension de la modélisation des matériaux poreux rigides est proposée, par l'ajout de deux paramètres intrinsèques reliés au comportement visco-inertiel du fluide intra-pores dans le régime des basses fréquences.Dans un second temps, l'impédance d'un liner, une propriété globale représentant le comportement acoustique de matériaux, est identifiée par inférence Bayésienne. Des données issues d'un benchmark de la NASA sont utilisées pour valider l'outil d'inférence développé, lorsque le matériau est en présence d'un écoulement rasant. Une extension des résultats au cas du banc B2A de l'ONERA est également réalisée, avec des mesures des champs de vitesses au dessus du liner, obtenues par LDV. Cette technique d'identification est par la suite utilisée sur un cas issu du B2A où un matériau poreux est présent au sein des cavités du liner, afin de mettre à jour l'influence du matériau poreux sur la réponse acoustique du liner en présence d'un écoulement rasant. Des mesures complémentaires en tube à impédance, sans écoulement et en incidence normale, sont également réalisées à différents niveaux sonores et pour diverses combinaisons de plaques perforées et de matériaux poreux, de façon à mettre en évidence l'influence de la présence d'un matériau poreux sur le comportement acoustique d'un liner soumis à de forts niveaux sonores. / The present work focuses on porous materials in aeronautics and the uncertainty considerations on the performed identifications. Porous materials are added inside the cavities of acoustic liners, materials formed with perforated plates and cavities, behaving as Helmholtz resonators, which are widely used in the industry. The aim is to increase the frequency range of the absorption spectrum, while improving the behaviour of liners to grazing flow and high sound intensity.This general topic is addressed by following two different leads.Porous materials were first considered in order to identify the intrinsic properties of their micro-geometry, necessary to the equivalent fluid semi-phenomenological models used later on. To achieve this, a statistical Bayesian inference tool is used to extract information on these properties, contained in reflected or transmitted signals, in three distinct frequency regimes. Furthermore, a modelling extension of rigid porous media is introduced, by adding two new intrinsic parameters related to the pore micro-structure and linked to the visco-inertial behaviour of the intra-pore fluid, at low frequencies.Then, the liner impedance, a global property representing the acoustic behaviour of materials, is identified through a Bayesian inference process. Data from a NASA benchmark are used to validate the developed tool, when the liner is subject to a shear grazing flow. An extension of these results to ONERA's B2A aeroacoustic bench is also performed, with measurements of the velocity profiles above the liner, obtained with a Laser Doppler Velocimetry technique. This identification technique is then further used for liner materials filled with porous media, to highlight the eventual influence of such a porous media on the acoustic response of the liner, when subject to a shear grazing flow. Additional measurements are permed without flow, at normal incidence, in a classical impedance tube. Different combinations of perforated plates and porous materials are tested at different sound pressure level, to evaluate the influence of the presence of porous media on the non-linear behaviour of liners when high sound pressure levels are present.
284

Crystal Engineering of Functional Metal-Organic Material Platforms for Gas Storage and Separation Applications

Elsaidi, Sameh Khamis 17 September 2014 (has links)
Metal-organic materials (MOMs) represent a unique class of porous materials that captured a great scientific interest in various fields such as chemical engineering, physics and materials science. They are typically assembled from metal ions or metal clusters connected by multifunctional organic ligands. They represent a wide range of families of materials that varied from 0D to 3D networks: the discrete (0D) structures exemplified by metal-organic polyhedra (MOPs), cubes and nanoballs while the polymeric 1D, 2D and 3D structures exemplified by coordination polymers (CPs). Indeed, the porous 3D structures include metal-organic frameworks (MOFs), porous coordination polymers (PCPs) and porous coordination networks (PCNs). Nevertheless, MOMs are long and well-known from more than 50 years ago as exemplified by CPs that were firstly introduced in early 1960s and reviewed in 1964. However, the scientific interest toward MOMs has been enormously grown only since late 1990s, with the discovery of MOMs with novel properties, especially the high permanent porosity as exemplified by MOF-5 and HKUST-1. The inherent tunability of MOMs from the de novo design to the post-synthetic modification along with their robustness, afford numerous important families of nets "platforms" such as pcu, dia, tbo, mtn and rht topology networks. There are more than 20,000 crystal structures of MOMs in the Cambridge Structure Database (CSD). However, only a few of the networks can be regarded as families or platforms where the structure is robust, fine-tunable and inherently modular. Such robustness and inherent modularity of the platforms allow the bottom-up control over the structure "form comes before function" which subsequently facilitates the systematic study of structure/function in hitherto unprecedented way compared with the traditional screening approaches that are commonly used in materials science. In this context, we present the crystal engineering of two MOM platforms; dia and novel fsc platforms as well we introduce the novel two-step synthetic approach using trigonal prismatic clusters to build multinodal 2D and 3D MOM platforms. For the dia platform, we introduce a novel strategy to control over the level of the interpenetration of dia topology nets via solvent-template control and study the impact of the resulting different pore sizes on the squeezing of CH4, CO2 and H2 gases. New benchmark material for methane isosteric heat of adsorption was produced from this novel work. Indeed we introduce the crystal engineering of a novel versatile 4,6-c fsc platform that is formed from linking two of the longest known and most widely studied MBBs: the square planar MBB [Cu(AN)4]2+( AN = aromatic nitrogen donor) and square paddlewheel MBB [Cu2(CO2R)4] that are connected by five different linkers with different length, L1-L5. The resulting square grid nets formed from alternating [Cu(AN)4]2+ and [Cu2(CO2R)4] moieties are pillared at the axial sites of the [Cu(AN)4]2+ MBBs with dianionic pillars to form neutral 3D 4,6-connected fsc (four, six type c) nets. Pore size control in this family of fsc nets was exerted by varying the length of the linker ligand whereas pore chemistry was implemented by unsaturated metal centers (UMCs) and the use of either inorganic or organic pillars. 1,5-naphthalenedisulfonate (NDS) anions pillar in an angular fashion to afford fsc-1-NDS, fsc-2-NDS, fsc-3-NDS, fsc-4-NDS and fsc-5-NDS from L1-L5, respectively. Experimental CO2 sorption studies revealed higher isosteric heat of adsorption (Qst) for the compound with the smaller pore size (fsc-1-NDS). Computational studies revealed that there is higher CO2 occupancy about the UMCs in fsc-1-NDS compared to other extended variants that were synthesized with NDS. SiF62- (SIFSIX) anions in fsc-2-SIFSIX form linear pillars that result in eclipse [Cu2(CO2R)4] moieties at a distance of just 5.86 Å. The space between the [Cu2(CO2R)4] moieties is a strong CO2 binding site that can be regarded as being an example of a single-molecule trap; this finding has been supported by modeling studies. Furthermore, we present herein the implementation of the two-step synthetic approach for the construction of novel multinodal MOM platforms, using the trigonal prism cluster [M3(µ3-O)(RCO2)6] as a precursor to build novel stable multinodal 2D and 3D frameworks. In the first step, the bifunctional carboxylate ligands are reacted with Fe+3 or Cr+3 salts to isolate highly symmetrical decorated trigonal prismatic clusters with diverse decoration such as pyridine, amine and cyano coordinating functional groups using pyridine carboxylate, amino carboxylate, cyano carboxylate type ligands, respectively. Afterward, the isolated highly soluble trigonal prismatic salts were reacted in the second step with another metal that can act as node or linker to connect the discrete trigonal prismatic clusters to build 2D or 3D networks. Indeed, we were able to develop another novel high-symmetry Cu cluster [Cu3(µ3-Cl)(RNH2)6Cl6] by utilizing CuCl2 salt and amine decorated trigonal prismatic cluster. Two novel 3D water stable frameworks with acs and stp topologies have been afforded. Our work on the crystal engineering design and synthesis of new MOM platforms offer an exceptional level of control over the resulting structure including; the resulting topology, pore size, pore chemistry and thereby enable the control over the resulting physicochemical properties in a manner that facilitates the achieving of the desired properties.
285

[M3(μ3-O)(O2CR)6] and Related Trigonal Prisms: Versatile Molecular Building Blocks for 2-Step Crystal Engineering of Functional Metal-Organic Materials

Schoedel, Alexander 07 March 2014 (has links)
Metal-organic materials (MOMs) assembled from metal-based building blocks and organic linkers have attracted much interest due to their large pore dimensions and their enormous structural diversity. In comparison to their inorganic counterparts (zeolites), these crystalline materials can be easily modified to tailor pore dimensions and functionality for specifically targeted properties. The work presented herein encompasses the development of a synthetic 2-step process for the construction of novel families of MOMs or 'platforms' and allow us exquisite design and control over the resulting network topologies. Examples of cationic mesoporous structures were initially exploited, containing carboxylate based centers connected by metal-pyridine bonds. The inherently cationic nets allowed for subsequent anion exchange which can be regarded as an elegant and easy postsynthetic modification strategy. The incorporation of different functionalities inside the channels of the networks was then demonstrated as useful in terms of carbon dioxide capture. The scope of the 2-step process was then expanded to construction of the first trinodal MOM platform involving triangular, tetrahedral and trigonal prismatic building units: tp-PMBB-1-asc. Examples of reticular chemistry are shown which enable the formation of large and functionalized nanocages with retention of the underlying network topology. Gas adsorption studies indicate relatively high uptakes of carbon dioxide and hydrogen which, together with the use of inexpensive ligands, provide an excellent cost/performance ratio of these materials. Moreover, very high stability in organic solvents and especially in water are addressed which is a particularly challenging, but industrially relevant target in the field of Metal-Organic Materials. The 2-step approach was also used to synthesize a new and versatile class of metal-organic materials with augmented lonsdaleite-e (lon-e-a) topology. This family of lon-e nets is built by pillaring of hexagonal 2-dimensional kagomé (kag) lattices that are in turn pillared by a trigonal prismatic Primary Molecular Building Block (tp-PMBB-1). These MOMs represent the first examples of axial-to-axial-pillared undulating kag layers and they are readily fine-tuned because the bdc2- moieties can be varied at their 5-position without changing the overall structure. This lon-e platform possesses functionalized hexagonal channels since the kag lattices are necessarily eclipsed. The effect of the substituent at the 5-positions of the bdc2- linkers upon gas adsorption, particularly the heats of adsorption of carbon dioxide and methane, were studied. If linear dicarboxylates were instead utilized, we were able to synthesize a new and versatile class of metal-organic materials that exhibits 4,6-connected fsb topology. These networks are constructed from simple and inexpensive building units and since interpenetration is precluded, afford very high void volumes. They therefore represent ideal targets to generate a novel family of frameworks, because of the ready availability functionalized and expanded ligand derivatives. They also allow for systematic fine tuning and could ultimately provide a roadmap to ultra-high surface areas from simple building blocks.
286

Moisture and ion transport in layered porous building materials a nuclear magnetic resonance study /

Petković, Jelena. January 1900 (has links) (PDF)
Thesis (Ph.D)--Technische Universiteit Eindhoven, 2005. / Title from document title page. Title from title screen (viewed on Dec. 6, 2007). Includes bibliographical references. Available in PDF format via the World Wide Web.
287

Small molecule and polymer templating of inorganic materials

Brennan, Daniel P. January 2006 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Chemistry, 2006. / Includes bibliographical references.
288

Use of pore-scale network to model three-phase flow in a bedded unsaturated zone

Zhang, Wenqian 17 July 1995 (has links)
Contamination of ground water by non-aqueous phase liquids (NAPLs) has received increasing attention. The most common approach to numerical modeling of NAPL movement through the unsaturated zone is the use of the finite difference or finite element methods to solve a set of partial differential equations derived from Darcy's law and the continuity equations (Abriola and Pinder, 1985; Kaluarachchi and Parker, 1989). These methods work well in many settings, but have given little insights as to why certain non-ideal flow phenomena will occur. The network modeling method, which considers flow at the pore-scale, was used in this study to better understand macroscopic flow phenomena in porous media. Pore-scale network models approximate porous medium as a connected network of pores and channels. Two and three-dimensional pore-scale network models were constructed in this study. A uniform statistical distribution was assumed to represent the random arrangement of pore and tube sizes. Both hysteristic scanning curves and intermediate fluid distribution are studied. The simulation results suggested that network models may be used to predict the characteristic curves of three-phase systems. The results also suggested that three-dimensional models are necessary to study the three-phase problems. Two-dimensional models do not provide realistic results as evidenced by their inability to provide scale-invariant representation of flow processes. The network sizes used in this study ranged from 10 x 5 (50) to 156 x 78 (12168) pores for two-dimensional and from 10 x 5 x 5 (250) to 100 x 50 x 5 (25000) pores for three-dimensional domains. The domain size of 100 x 50 x 5 pores was large enough to provide descriptions independent of the domain scale. The one important limitation of network models is the considerable computational requirements. The use of very high speed computers is essential. Except for this limitation, the network model provides an invaluable technique to study fluid transport mechanisms in the vadose zone. / Graduation date: 1996
289

Hydrothermal and ionothermal carbon structures : from carbon negative materials to energy applications

Fellinger, Tim-Patrick January 2011 (has links)
The needs for sustainable energy generation, but also a sustainable chemistry display the basic motivation of the current thesis. By different single investigated cases, which are all related to the element carbon, the work can be devided into two major topics. At first, the sustainable synthesis of “useful” carbon materials employing the process of hydrothermal carbonisation (HC) is described. In the second part, the synthesis of heteroatom - containing carbon materials for electrochemical and fuel cell applications employing ionic liquid precursors is presented. On base of a thorough review of the literature on hydrothermolysis and hydrothermal carbonisation of sugars in addition to the chemistry of hydroxymethylfurfural, mechanistic considerations of the formation of hydrothermal carbon are proposed. On the base of these reaction schemes, the mineral borax, is introduced as an additive for the hydrothermal carbonisation of glucose. It was found to be a highly active catalyst, resulting in decreased reaction times and increased carbon yields. The chemical impact of borax, in the following is exploited for the modification of the micro- and nanostructure of hydrothermal carbon. From the borax - mediated aggregation of those primary species, widely applicable, low density, pure hydrothermal carbon aerogels with high porosities and specific surface areas are produced. To conclude the first section of the thesis, a short series of experiments is carried out, for the purpose of demonstrating the applicability of the HC model to “real” biowaste i.e. watermelon waste as feedstock for the production of useful materials. In part two cyano - containing ionic liquids are employed as precursors for the synthesis of high - performance, heteroatom - containing carbon materials. By varying the ionic liquid precursor and the carbonisation conditions, it was possible to design highly active non - metal electrocatalyst for the reduction of oxygen. In the direct reduction of oxygen to water (like used in polymer electrolyte fuel cells), compared to commercial platinum catalysts, astonishing activities are observed. In another example the selective and very cost efficient electrochemical synthesis of hydrogen peroxide is presented. In a last example the synthesis of graphitic boron carbon nitrides from the ionic liquid 1 - Ethyl - 3 - methylimidazolium - tetracyanoborate is investigated in detail. Due to the employment of unreactive salts as a new tool to generate high surface area these materials were first time shown to be another class of non - precious metal oxygen reduction electrocatalyst. / Die Notwendigkeit einer nachhaltigen Energiewirtschaft, sowie der nachhaltigen Chemie stellen die Motivation der vorgelegten Arbeit. Auf Grundlage separater Untersuchungen, die jeweils in engem Bezug zum Element Kohlenstoff stehen, kann die Arbeit in zwei Themenfelder geordnet werden. Der erste Teil behandelt die nachhaltige Herstellung nützlicher Kohlenmaterialien mit Hilfe des Verfahrens der hydrothermalen Carbonisierung. Im zweiten Teil wird die Synthese von Bor und Stickstoff angereicherten Kohlen aus ionischen Flüssigkeiten für elektrochemische Anwendungen abgehandelt. Insbesondere geht es um die Anwendung in Wasserstoff-Brennstoffzellen. Als Ergebnis einer sorgfältigen Literatur¬zusammenfassung der Bereiche Hydrothermolyse, hydrothermale Carbonisierung und Chemie des Hydroxymethylfurfurals wird ein chemisch-mechanistisches Modell zur Entstehung der Hydrothemalkohle vorgestellt. Auf der Basis dieses Modells wird ein neues Additiv zur hydrothermalen Carbonisierung von Zuckern vorgestellt. Die Verwendung des einfachen Additivs, genauer Borax, erlaubt eine wesentlich verkürzte und zu niedrigeren Temperaturen hin verschobene Prozessführung mit höheren Ausbeuten. Anhand des mechanistischen Modells wird ein Einfluss auf die Reaktion von Zuckern mit der reaktiven Kohlenvorstufe (Hydroxymethylfurfural) identifiziert. Die chemische Wirkung des Minerals Borax in der hydrothermalen Carbonisierung wird im Folgenden zur Herstellung vielfältig anwendbarer, hochporöser Kohlen mit einstellbarer Partikelgröße genutzt. Zum Abschluss des ersten Teils ist in einer Serie einfacher Experimente die Anwendbarkeit des mechanischen Modells auf die Verwendung „echter“ Biomasse in Form von Wassermelonenabfall gezeigt. Im zweiten Teil werden verschiedene cyano-haltige ionische Flüssigkeiten zur ionothermalen Synthese von Hochleistungskohlen verwendet. Durch Variation der ionischen Flüssigkeiten und Verwendung unterschiedlicher Synthesebedingungen wird die Herstellung hochaktiver, metallfreier Katalysatoren für die elektrochemische Reduktion von Sauerstoff erreicht. In der direkten Reduktion von Sauerstoff zu Wasser (wie sie in Brennstoffzellen Anwendung findet) werden, verglichen zu konventionellen Platin-basierten elektrochemischen Katalysatoren, erstaunliche Aktivitäten erreicht. In einem anderen Beispiel wird die selektive Herstellung von Wasserstoffperoxid zu sehr geringen Kosten vorgestellt. Abschließend wird anhand der Verwendung der ionischen Flüssigkeit 1-Ethyl-3-methylimidazolium-tetracyanoborat eine detaillierte Betrachtung zur Herstellung von graphitischem Borcarbonitrid vorgestellt. Unter Verwendung unreaktiver Salze, als einfaches Werkzeug zur Einführung großer inneren Oberflächen wird erstmals die elektrokatalytische Aktivität eines solchen Materials in der elektrochemischen Sauerstoffreduktion gezeigt.
290

Open-Framework Germanates : Synthesis, Structure, and Characterization

Inge, Andrew Kentaro January 2012 (has links)
Novel open-framework germanates and open low-dimensional structures were synthesized and characterized. Their crystal structures were solved by single crystal X-ray diffraction or X-ray powder diffraction combined with other techniques. Although related open-framework materials, such as zeolites, are of interest for the ability to selectively accommodate guest species in their rings, pores and channels, germanates are primarily of interest for their unique structural properties. Compared to aluminosilicate-based zeolites, germanium oxides readily form frameworks with extra-large rings and low framework density. The formation of elegant germanate architectures is attributed to the unique Ge-O bond geometries compared to Si-O, and the tendency to form large clusters. This thesis is to serve as an introduction to germanate synthesis, structures and characterization. Structures are categorized in accordance to their building units; the Ge7X19 (Ge7), Ge9X25-26 (Ge9) and Ge10X28 (Ge10) (X = O, OH, or F) clusters. Structure determination techniques as well as the characterization techniques used to examine the properties of the materials are presented. While most of the discussed techniques have routinely been used to study crystalline open-frameworks, we introduce the use of infrared spectroscopy for the identification of cluster types, valuable for structure determination by X-ray powder diffraction. Structures and properties of the novel materials ASU-21, SU-62, SU-63, SU-64, SU-65, SU-66, SU-71, SU-72, SU-73, SU-74, SU-75 and SU-JU-14 are described and put into context with previously known structures. The novel structures are all built of the Ge7, Ge9 or Ge10 clusters, and vary from a framework with novel topology to the first open zero-dimensional germanate cavities built of such clusters. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: Manuscript. Paper 4: Submitted. Paper 6: Submitted. Paper 7: Manuscript. Paper 8. Manuscript. Paper 10: Unpublished book chapter.</p><p> </p>

Page generated in 0.0771 seconds