1 |
Modeling of nonlinear diffusion / Modeling of nonlinear diffusionOyekan, Oluwadamilola Adeniyi January 2019 (has links)
In this thesis, we study the nonlinear diffusion equation especially Porous Medium Equation (PME). u_t= \Delta(u^m) + f(u), Parameter m>1 in the case of slow diffusion, m=1 means linear model and $0
|
2 |
Local gradient estimate for porous medium and fast diffusion equations by Martingale methodZhang, Zichen January 2014 (has links)
This thesis focuses on a certain type of nonlinear parabolic partial differential equations, i.e. PME and FDE. Chapter 1 consists of a survey on results related to PME and FDE, and a short review on some works about deriving gradient estimates in probabilistic ways. In Chapter 2 we estimate gradient on space variables of solutions to the heat equation on Euclidean space. The main idea is to construct two semimartingales by letting the solution and its gradient running backward on the path space of a diffusion process. Estimates derived from decompositions of those two semimartingales are then combined to give rise to an upper bound on gradient that only involves the maximum of the initial data and time variable. In particular, it is independent of the dimension. In Chapter 3 we carry the idea in Chapter 2 onto the study of positive solutions to PME or FDE, and obtained a similar type of bound on |∇u| for local solutions to PME or FDE on Euclidean space. In existing literature there have always been constraints on m. By considering a more general form of transformation on u and introducing a family of equivalent measures on path space, we add more flexibility to our method. Thus our result is valid for a larger range of m. For global solutions, when m violates our constraint, we need two-sided bound on u to control |∇u|. In Chapter 4 we utilize maximum principle to derive Li-Yau type gradient estimate for PME on a compact Riemannian manifold with Ricci curvature bounded from below. Our result is able to yield a Harnack inequality possessing the right order in time variable when the lower bound of Ricci curvature is negative.
|
3 |
Mathematical modelling of membrane filtrationKrupp, Armin Ulrich January 2017 (has links)
In this thesis, we consider four different problems in membrane filtration, using a different mathematical approach in each instance. We account for the fluid-driven deformation of a filtercake using nonlinear poroelasticity in Chapter 2. By considering feeds with very high and very low particle concentrations, we introduce a quasi-static caking model that provides a suitable approximation to the full model for the physically realistic concentration regimes. We illustrate the agreements and differences between our model and the existing conventional cake-filtration law. In Chapter 3, we introduce a stochastic model for membrane filtration based on the quantised nature of the particles and show how it can be applied for feeds with different particle types and membranes with an interconnected pore structure. This allows us to understand the relation between the effects of clogging on the level of an individual pore and on the macroscopic level of the entire membrane. We conclude by explaining the transition between the discrete and continuous model based on the Fokker--Planck equation. In Chapter 4, we consider the inverse problem of determining the underlying filtration law from the spreading speed of a particle-laden gravity current. We first couple the theory of gravity currents with the stochastic model developed in Chapter~3 to determine a filtration law from a given set of experiments. We then generalise this idea for the porous medium equation, where we show that the position of the front follows a power law for the conventional filtration laws, which allows us to infer the clogging law in certain instances. We conclude the thesis by showing in Chapter 5 how we can combine experimental measurements for the clogging of a depth filter and simple fluid dynamics to accurately predict the pressure distribution in a multi-capsule depth filter during a filtration run.
|
4 |
Étude des équations des milieux poreux et des modèles de cloques / Study of the porous medium equation and of a blister modelChmaycem, Ghada 18 September 2014 (has links)
Dans cette thèse, deux problèmes complètement indépendants sont étudiés. Le premier sujet porte sur l'analyse mathématique d'un modèle simple de délamination de films minces et d'apparition de cloques. Le second sujet est une étude fine de l'équation des milieux poreux motivée par des problèmes d'intrusion saline. Dans le premier sujet de ce travail, nous considérons un modèle variationnel simple unidimensionnel décrivant la délamination de films minces sous l'effet d'un refroidissement. Nous caractérisons les minimiseurs globaux qui correspondent à trois types de films: non-délaminés, partiellement délaminés (appelés cloques) ou bien complètement délaminés. Deux paramètres jouent un rôle crucial dans un tel phénomène : la longueur du film et la température. Dans le plan de phase de ces deux derniers, nous classifions l'ensemble des minimiseurs. Comme conséquence de notre analyse, nous identifions explicitement les cloques les plus petites pour ce modèle. Dans le deuxième sujet, nous répondons d'abord à une question ouverte depuis longtemps concernant l'existence de nouvelles contractions pour l'équation de type milieux poreux. Pour m>0, nous nous sommes intéressés à des solutions positives de l'équation suivanteU_t=Delta U^m. Pour 0<m<2, nous présentons une nouvelle famille de contractions pour cette équation en toute dimension, ce qui induit une extension des propriétés de la contraction L^1. Notre contraction peut être considérée comme étant la quatrième contraction connue pour cette équation. Même pour le cas m=1, notre approche aboutit à des nouveaux résultats pour l'équation de la chaleur standard. Dans un second temps, nous avons traité le même problème mais en utilisant une approche différentielle différente basée sur les distances géodésiques. Cette approche originale et générale sert à fabriquer des familles de contractions pour des équations aux dérivées parielles non linéaires, d'évolutions ou stationnaires. Nous présentons dans ce cadre diverses applications. En particulier, nous traitons à nouveau l'équation des milieux poreux et l'équation doublement non linéaire / In this thesis, we study two completely independent problems. The first one focuses on a simple mathematical model of thin films delamination and blistering analysis. In the second one, we are interested in the study of the porous medium equation motivated by seawater intrusion problems. In the first part of this work, we consider a simple one-dimensional variational model, describing the delamination of thin films under cooling. We characterize the global minimizers, which correspond to films of three possible types : non delaminated, partially delaminated (called blisters), or fully delaminated. Two parameters play an important role : the length of the film and the cooling parameter. In the phase plane of those two parameters, we classify all the minimizers. As a consequence of our analysis, we identify explicitly the smallest possible blisters for this model. In the second part, we answer a long standing open question about the existence of new contractions for porous medium type equations. For m>0, we consider nonnegative solutions U(t,x) of the following equationU_t=Delta U^m.For 0<m<2, we present a new family of contractions for this equation in any dimension, which extends the L^1 contraction properties. Our contraction can be seen as the fourth known contraction for this equation. Even for the case m=1, our approach leads to new results for the standard heat equation. A second work focuses on the same problem but using a differential approach based on geodesic distances. This original and general method is used to produce families of contractions for nonlinear partial differential equations, of evolution or stationary type. We present in this part various applications of this original method. In particular, we are concerned with the porous medium and the doubly nonlinear equations
|
5 |
A weighted particle approach to non-linear diffusion equations : On the convergence of a particle approximation of the qudratic porous medium equation / En partikelmetod for icke-linjära diffusionsekvationer : Om konvergens för en partikel-approximation av den kvadratiska porös-medium-ekvationenLieback, Erik January 2024 (has links)
In this thesis we design and study a particle method that can be used to numericallyapproximate solutions to the quadratic porous medium equation. The idea consists offirst approximating the porous medium equation using a non-local transport equation,to which we approximate the solution with a particle method. We prove that theparticle method converges, in a suitable norm, to the solution to the non-localtransport equation. We provide numerical simulations to illustrate this convergenceand estimate the order of convergence. In particular, we use the particle method toapproximate the Barenblatt solutions to the quadratic porous medium equation. Theanalysis of the partial differential equations is to a large extent carried out in the senseof integrable functions, while the analysis of the particle method relies on a dualityapproach on the space of finite signed Radon measures. / Vi konstruerar och undersöker en partikelmetod som kan användas för att lösaden kvadratiska porös-medium-ekvationen numeriskt. Huvudidén är att förstapproximera ekvationen med en icke-lokal transportekvation, som vi sedan lösernumeriskt med en partikelmetod.Vi bevisar att partikelmetoden konvergerar, i en passande norm, till lösningen tillden icke-lokala transport-ekvationen. Vi presenterar numeriska simulationer föratt illustera denna konvergens och estimera hur snabb konvergensen är. För attgöra detta försöker vi använda partikelmetoden för att approximera Barenblattslösningar till den kvadratiska porös-medium-ekvationen. Vår analys av de partielladifferentialekvationerna görs till stor del i rummet av Lebesgue-integrerbarafunktioner, medan vår analys av partikelmetoden är baserad på att se rummet avändliga Radon-mått som ett underrum till ett dualrum.
|
6 |
[en] POROUS MEDIUM MODEL IN CONTACT WITH RESERVOIRS / [pt] MODELO EM MEIOS POROSOS EM CONTATO COM RESERVATÓRIOSRENATO RICARDO DE PAULA 17 August 2017 (has links)
[pt] A primeira parte da dissertação é dedicada ao estudo do modelo em meios porosos em contato com reservatórios e à obtenção, heurística, da equação hidrodinâmica para esse modelo, com o intuito de iniciar o estudo do limite hidrodinâmico que garante que a evolução da densidade de partículas desse modelo é descrita pela solução fraca da equação hidrodinâmica, nomeadamente, a equação em meios porosos com condições de Dirichlet. A segunda parte da dissertação é dedicada ao estudo do método da representação matricial, a chamada matriz ansatz, que será utilizado para caracterizar as medidas estacionárias de sistemas de partículas fora do equilíbrio. Usaremos o processo de exclusão simples simétrico como motivação para apresentar as técnicas utilizadas nesse método. Munido dessas técnicas conseguimos obter pela primeira vez a função de correlação de segunda ordem para o processo de exclusão simples simétrico em contato com reservatórios lentos, e além disso, conseguimos obter informação do estado estacionário do modelo em meios porosos em contato com reservatórios. / [en] The first part of the dissertation is dedicated to the study of the porous medium model in contact with reservoirs and to, heuristically, obtain the hydrodynamic equation for this model, with the pursuit of starting the study of the hydrodynamic limit which guarantees that the evolution of the density of particles of this model is described by the weak solution of the hydrodynamic equation, namely, the porous medium equation with Dirichlet boundary conditions. The second part of the dissertation is dedicated to the study of the matrix representation method, the so-called matrix ansatz, which will be used to characterize the stationary measures of particle systems out of equilibrium. For warming up, we will use the symmetric simple exclusion process as a toy model to present the techniques used in this method. With those techniques, for the first time we obtained the second order correlation function for the symmetric simple exclusion process in contact with slow reservoirs, and in addition, we were able to obtain information about the steady state of the porous medium model in contact with reservoirs.
|
Page generated in 0.0902 seconds