• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Ported Shroud Casing Treatment Modifications on Operational Range and Limits in a Centrifugal Compressor

Newell, Alexander A. 05 April 2021 (has links)
The implementation of a ported shroud casing treatment is often used to extend the operating range of a centrifugal compressor. This work utilizes the STAR-CCM+ CFD package to analyze steady-state, single-passage simulations of a centrifugal compressor with and without a ported shroud to better understand how a ported shroud affects compressor flow physics. Verification and validation of simulations were conducted by comparison of results with a time-accurate full-annulus simulation and experimental data. Four different ported shroud revisions were considered and modeled along the full range of their stable operation, with emphasis placed on the flow limits of choke and stall. A ported shroud is found to improve the choked mass flow limit by increasing the aerodynamic area of the compressor. Near-stall operation is improved through flow recirculation through the ported shroud. This flow, which is induced with a large component of tangential velocity from having passed the impeller blades' leading edge once, reduces the impeller incidence. The influence of a strut is found to restrict both limits of operation by reducing the aerodynamic area and obstruction of tangential velocity. The revisions considered demonstrate that facilitation of flow entering the ported shroud under either near-stall or choked conditions causes a noteworthy improvement in performance. Such alterations, in this application, demonstrate a 3.3% improvement in choked mass flow rate under choked conditions and an 1.3 degree reduction in impeller incidence under near-stall conditions, as compared to the initial ported shroud design. Understanding the effect that a ported shroud casing treatment has on compressor flow physics, especially near its limits of operation, suggests methods for improving centrifugal compressor design to increase its stable operating range.
2

Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control

Guillou, Erwann January 2011 (has links)
No description available.

Page generated in 0.0513 seconds