Spelling suggestions: "subject:"portlandite"" "subject:"portlandita""
1 |
Numerical Modelling of Cement Grout Degradation in a Single Rock Fracture / Numerisk Modellering av Cementbruknedbrytning i en Enskild BergssprickaTisselli, Francesco January 2024 (has links)
The construction of infrastructures such as dams requires for the foundations to lay on stable ground. One way to do so is to grout the rock fractures present in the bedrock using concrete, and this also ensures that lower amounts of groundwater reach the infrastructure itself. However, the continuous flow of groundwater carrying various dissolved chemical compounds, will trigger over time the deterioration of the concrete grout by dissolving the mineral phases resulting from the hydration process. This study aims at determining the variations in porosity and hydraulic conductivity induced by the dissolution of portlandite content present in the grout following the groundwater flow. Eight different cases have been simulated in COMSOL Multiphysics®, based on various combinations of fracture geometry (rough and smooth), hydraulic gradient, and inflowing groundwater composition. Each model has two main components, one for the flow simulation and one for the reactive transport. The modules implemented from COMSOL Multiphysics® are Darcy’s Law, Chemistry, and Transport of Diluted Species in Porous Media. The software PHREEQC has been used to determine the chemical species concentration for both the initial and boundary conditions. The results show that, at the end of a 100-day period, the mineral concentration decreases from 56.27% to 61.27% depending on the simulation considered. This leads to an increase in porosity ranging from 1.94% to 2.23%, while hydraulic conductivity displays a minimum growth of 6.42% and a maximum of 7.43%. The sensitivity analysis results reveal that the most influencing factor on the degradation is the hydraulic gradient, which is followed by the fracture geometry, while the inflowing groundwater composition impact is not as high as the previous ones. / Byggandet av infrastrukturer som dammar kräver att grunden läggs på stabil mark. Ett sätt att uppnå detta är att fylla sprickor i berggrunden med betong, vilket också säkerställer att mindre mängder grundvatten når infrastrukturen. Det kontinuerliga flödet av grundvatten, som bär med sig olika lösta kemikalier, kan dock med tiden leda till att betongen bryts ner genom att mineralfaserna som bildas vid hydratiseringsprocessen löses upp. Denna studie undersöker hur porositeten och den hydrauliska ledningsförmågan förändras när portlandit i betongfogar löses upp av grundvattenflödet. Åtta olika scenarier har simulerats i COMSOL Multiphysics® med olika kombinationer av sprickgeometri (grov och slät), hydraulisk gradient och inkommande grundvattensammansättning. Varje modell består av två huvuddelar: en för flödessimulering och en för reaktiv transport. Modulerna från COMSOL Multiphysics® som används är Darcys lag, kemi och transport av utspädda ämnen i porösa medier. Programvaran PHREEQC har använts för att fastställa koncentrationen av kemiska ämnen för både initiala och gränsvillkor. Resultaten visar att efter 100 dagar minskar mineralkoncentrationen med mellan 56,27% och 61,27%, beroende på simuleringen. Detta leder till en ökning av porositeten med 1,94% till 2,23%, medan den hydrauliska ledningsförmågan ökar med minst 6,42% och högst 7,43%. Känslighetsanalysen visar att den hydrauliska gradienten är den mest påverkande faktorn för nedbrytningen, följd av sprickgeometrin. Sammansättningen av det inkommande grundvattnet har inte lika stor påverkan.
|
2 |
Vývoj vysokopevnostních betonů s vysokým obsahem el. popílků / The development of high-strength concrete with a high content of el. fly ashRoubal, David January 2019 (has links)
This diploma thesis deals with the study of high-strength, high-volume fly ash concrete. The theoretical part of this thesis focuses on the detailed characteristic and main principles of high-strength concrete, high-volume fly ash concrete. In addition, according to the findings, the technology of high-strength and high-volume fly ash concrete, including principles of high strength, has been described. On the basis of the findings, high-strength, high-volume fly ash concrete for specific compressive strengths has been designed and created in the experimental section. These concretes were then subjected to a number of tests.
|
3 |
Studium mikrostruktury autoklávovaného pórobetonu s využitím druhotných surovin / Study of microstructure of autoclaved aerated concrete with using of secondary raw materialsMartanová, Jana January 2018 (has links)
Autoclaved aerated concrete is a used building material, especially for its thermal insulating properties. During autoclaving, an aerated concrete microstructure produces crystalline CSH phases, primarily tobermorite. The ingoing substances are calcium oxide and silica. In addition to commonly used raw materials, secondary raw materials rich in silicon dioxide can be used for production. The use of secondary raw materials gives the opportunity for the construction industry to be more environmentally friendly. Another benefit is the reduction of financial costs. The work explores the influence of individual secondary raw materials on the microstructure. High-temperature fly ash, fluid fly ash, cinder, ground glass and zeolite were used The raw materials were mixed with unalloyed lime at a molar ratio of calcium oxide to silicon dioxide of 0.73 and 1.0. Autoclaving capsules were used to synthesize tobermorite under laboratory conditions. Autoclave was performed at 170 °C and 190 °C with hydrothermal durations of 4, 8 and 16 hours. The most important influence on the microstructure was high-temperature fly ash, on the contrary, the greatest influence on the mechanical properties is attributed to the ground glass.
|
Page generated in 0.0302 seconds