1 |
3-D Positioning in Large Warehouses using Radio-frequency identificationKarhu, Jonas January 2014 (has links)
In large warehouses, there are a lot of articles that needs do be kept track of. As the number of articles grows larger, the administrative complexity increases. Thus, a solution that automatically keeps track of the position of each article in real-time is of interest. That is, if an item in the warehouse is moved, no manual administration should be needed to know the new position of the item. Radio detection and ranging (RADAR) is a ranging technique that doesn’t need to communicate with an object to find the distance to it, instead signals are sent and when they are reflected off the object and returned to the sender, the distance to the object may be calculated. However, you cannot tell two equally shaped objects apart purely based on RADAR techniques. There are many other techniques for ranging, sound navigation and ranging (SONAR) is another example, but they all lack the possibility of detecting the identity of the object. So, in order to find a specific item’s position, some kind of communication with the item is necessary. Radiofrequency identification (RFID) is a neat technology with which this is possible. An RFID reader can send radio signals out in the air, and objects that are in the vicinity of the reader and are tagged with an RFID tag can receive that signal and respond with it’s unique identification number. This way, the RFID reader can identify the RFID tagged object from a distance. There are also a variety of ways to approximate the distance between reader and tag. Unfortunately this is a rather difficult task, especially in indoor environments. There are already some existing products on the market that uses RFID for different kinds of positioning. In this thesis, the theory behind positioning, the fundamentals of RFID and different positioning solutions will be analysed and presented. A number of tests were carried out with an RFID system within the ultra-high frequency (UHF) band, which is around 866 MHz. The test system only supported range estimation based on the received signal strength indicator (RSSI) and the test results showed that narrowband RSSI measurements are highly disturbed by multipath propagation which make the overall positioning performance insufficient. Further analysis of time based range estimation techniques, such as time of arrival (TOA), time of flight (TOF) and time difference of arrival (TDOA), revealed that better positioning accuracy is possible, especially if ultra-wide bandwidth (UWB) is used.
|
2 |
Strategická pozice značky a její definování v konkurenčním prostředí / Strategic Position of a Trademark and its Definition in the Competitive EnvironmentFroňková, Tereza January 2008 (has links)
The thesis focuses on defining the strategic brand positioning, its long term building possibilities in a competitive market environment and assesment methods. The thesis includes case study on international cosmetic brand Dove and how the communication influences the brand.
|
3 |
Adaptive signal prediction with application to ship motionsPittaras, Athanasios January 1992 (has links)
No description available.
|
4 |
The application of geometric modelling to motor vehicle constructionGraham, S. L. January 1988 (has links)
No description available.
|
5 |
Tectonic plate motions from global GPS measurementsLavallee, D. A. January 2000 (has links)
No description available.
|
6 |
Aspects of stochastic & functional modelling for precise baseline determination in satellite geodesySahin, Muhammed January 1993 (has links)
No description available.
|
7 |
Short range GPS single epoch ambiguity resolutionAl-Haifi, Yahia Mohamed Hasan January 1996 (has links)
No description available.
|
8 |
The impact of selective availability on offshore DGPS positioningMatori, Abdul Nasir January 1996 (has links)
No description available.
|
9 |
Processing techniques for high precision differential GPSBadi, Khalafalla Mohamed January 1994 (has links)
No description available.
|
10 |
GPS : Preprocessing and data validation for the phase observableAhmad, N. January 1988 (has links)
No description available.
|
Page generated in 0.1175 seconds