• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invariant Subspaces Of Positive Operators On Riesz Spaces And Observations On Cd0(k)-spaces

Caglar, Mert 01 August 2005 (has links) (PDF)
The present work consists of two main parts. In the first part, invariant subspaces of positive operators or operator families on locally convex solid Riesz spaces are examined. The concept of a weakly-quasinilpotent operator on a locally convex solid Riesz space has been introduced and several results that are known for a single operator on Banach lattices have been generalized to families of positive or close-to-them operators on these spaces. In the second part, the so-called generalized Alexandroff duplicates are studied and CDsigma, gamma(K, E)-type spaces are investigated. It has then been shown that the space CDsigma, gamma(K, E) can be represented as the space of E-valued continuous functions on the generalized Alexandroff duplicate of K.
2

Every Pure Quasinormal Operator Has a Supercyclic Adjoint

Phanzu, Serge Phanzu 20 August 2020 (has links)
No description available.
3

Matrix Analysis and Operator Theory with Applications to Quantum Information Theory

Plosker, Sarah 12 July 2013 (has links)
We explore the connection between quantum error correction and quantum cryptography through the notion of conjugate (or complementary) channels. This connection is at the level of subspaces and operator subsystems; if we use a more general form of subsystem, the link between the two topics breaks down. We explore both the subspace and subsystem settings. Error correction arises as a means of addressing the issue of the introduction of noise to a message being sent from one party to another. Noise also plays a role in quantum measurement theory: If one wishes to measure a system that is in a particular state via a measurement apparatus, one can first act upon the system by a quantum channel, which can be thought of as a noise source, and then measure the resulting system using a different measurement apparatus. Such a setup amounts to the introduction of noise to the measurement process, yet has the advantage of preserving the measurement statistics. Preprocessing by a quantum channel leads to the partial order "cleaner than" on quantum probability measures. Other meaningful partial orders on quantum probability measures exist, and we shall investigate that of cleanness as well as that of absolute continuity. Lastly, we investigate partial orders on vectors corresponding to quantum states; such partial orders, namely majorization and trumping, have been linked to entanglement theory. We characterize trumping first by means of yet another partial order, power majorization, which gives rise to a family of examples. We then characterize trumping through the complete monotonicity of certain Dirichlet polynomials corresponding to the states in question. This not only generalizes a recent characterization of trumping, but the use of such mathematical objects simpli es the derivation of the result. / The Natural Sciences and Engineering Research Council of Canada (NSERC)

Page generated in 0.0757 seconds