• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topological control of 3,4-connected frameworks based on the Cu2-paddle-wheel node: tbo or pto, and why?

Müller, Philipp, Grünker, Ronny, Bon, Volodymyr, Pfeffermann, Martin, Senkovska, Irena, Weiss, Manfred S., Feng, Xinliang, Kaskel, Stefan 06 April 2017 (has links) (PDF)
Two trigonal tritopic ligands with different conformational degree of freedom: conformationally labile H3tcbpa (tris((4-carboxyl)phenylduryl)amine) and conformationally obstructed H3hmbqa (4,4′,4′′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quino-lizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoic acid) are assembled with square-planar paddle-wheel nodes with the aim of selective engineering of the frameworks with tbo and pto underlying net topologies. In the case of H3tcbpa, both topological types were obtained forming non-interpenetrated MOFs namely DUT-63 (tbo) and DUT-64 (pto). Whereas synthesis of DUT-63 proceeds under typical conditions, formation of DUT-64 requires an additional topology directing reagent (topological modifier). Solvothermal treatment of the conformationally hindered H3hmbqa ligand with the Cu-salt results exclusively in DUT-77 material, based on the single pto net. The possibility to insert the salen based metallated pillar ligand into networks with pto topology post-synthetically results in DUT-78 and DUT-79 materials (both ith-d) and opens new horizons for post-synthetic insertion of catalytically active metals within the above-mentioned topological type of frameworks.
2

Topological control of 3,4-connected frameworks based on the Cu2-paddle-wheel node: tbo or pto, and why?

Müller, Philipp, Grünker, Ronny, Bon, Volodymyr, Pfeffermann, Martin, Senkovska, Irena, Weiss, Manfred S., Feng, Xinliang, Kaskel, Stefan 06 April 2017 (has links)
Two trigonal tritopic ligands with different conformational degree of freedom: conformationally labile H3tcbpa (tris((4-carboxyl)phenylduryl)amine) and conformationally obstructed H3hmbqa (4,4′,4′′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quino-lizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoic acid) are assembled with square-planar paddle-wheel nodes with the aim of selective engineering of the frameworks with tbo and pto underlying net topologies. In the case of H3tcbpa, both topological types were obtained forming non-interpenetrated MOFs namely DUT-63 (tbo) and DUT-64 (pto). Whereas synthesis of DUT-63 proceeds under typical conditions, formation of DUT-64 requires an additional topology directing reagent (topological modifier). Solvothermal treatment of the conformationally hindered H3hmbqa ligand with the Cu-salt results exclusively in DUT-77 material, based on the single pto net. The possibility to insert the salen based metallated pillar ligand into networks with pto topology post-synthetically results in DUT-78 and DUT-79 materials (both ith-d) and opens new horizons for post-synthetic insertion of catalytically active metals within the above-mentioned topological type of frameworks.

Page generated in 0.0714 seconds