• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Development of Low-cost Multi-function UAV Suitable for Production and Operation in Low Resource Environments

Standridge, Zachary Dakotah 06 July 2018 (has links)
A new flying wing design has been developed at the Unmanned Systems Lab (USL) at Virginia Tech to serve delivery and remote sensing applications in the developing world. The fully autonomous unmanned aerial vehicle (UAV), named EcoSoar, was designed with the goal of creating a business opportunity for local entrepreneurs in low-resource communities. The system was developed in such a way that local fabrication, operation, and maintenance of the aircraft are all possible. In order to present a competitive financial model for sustained drone services, EcoSoar is made with reliable low-cost materials and electronics. This paper lays out the rapid prototyping and flight experiment efforts that went into polishing the design, test results from an EcoSoar centered drone workshop in Kasungu, Malawi, and finally a range optimization study with flight test validation. / Master of Science / A new humanitarian drone has been developed at the Unmanned Systems Lab (USL) at Virginia Tech. The unmanned aerial vehicle (UAV), named EcoSoar, was designed with the goal of creating a business opportunity for local entrepreneurs in low-resource communities. In order to be a viable solution in the developing world EcoSoar utilizes customizable 3D-printed parts and wings made from cheap materials like posterboard and packing tape. In addition, tools for building the drone have been developed in such a way that anyone can learn to construct and operate EcoSoar regardless of experience. This paper lays out the engineering efforts that went into the design, lessons learned from an EcoSoar-centered workshop in Kasungu, Malawi, and finally offers an upgraded design.

Page generated in 0.2147 seconds