1 |
Auswirkungen von räumlichem Populationswachstum auf die genetische Vielfalt / Impact of range expansions on genetic diversityBoekhoff, Sven 01 August 2014 (has links)
Wächst eine Population und breitet sich dabei geographisch aus, so spricht man von räumlichem Populationswachstum, bzw. einer Range-Expansion. Viele Arten haben im Verlaufe ihrer evolutionären Geschichte ihr Verbreitungsgebiet ausgeweitet. Gründe hierfür können beispielsweise ein geändertes Klima oder die Verschleppung der Art in einen neuen Lebensraum sein.
Während einer Range-Expansion können durch Gene-Surfing räumliche Verteilungen von neutralen genetischen Varianten entstehen, die den Folgen von selektiven Prozessen ähnlich sind. Für eine korrekte Interpretation der genetischen Daten ist daher die Kenntnis über quantitative Auswirkungen von Range-Expansions auf die genetische Vielfalt unumgänglich.
In dieser Arbeit charakterisiere ich die Konsequenzen von Range-Expansions für Allelfrequenz-Spektren. Dazu generiere ich in Computersimulationen genetische Daten für unterschiedliche demographische Szenarien sowie diverse ökologische und geographische Bedingungen.
Ich zeige, dass Range-Expansions innerhalb kurzer Zeit zu Allelfrequenz-Spektren führen können, die sich durch ein Potenzgesetz mit einem spezifischen Exponenten beschreiben lassen. Dieser Exponent liegt zwischen den erwarteten Exponenten für stabile und exponentiell wachsende, durchmischte Populationen. Mutationen, die während einer Range-Expansion aufgetreten sind, tragen meinen Ergebnissen zufolge weniger zu heutigen Allelfrequenz-Spektren bei, als Mutationen, die bereits in der Ursprungspopulation vorhanden waren. Allerdings eignen sich neue Mutationen besser, um Range-Expansions in genetischen Daten aufzuspüren, da sie weniger von geographischen Strukturen beeinflusst werden.
Meine Resultate werden dazu beitragen, Spuren von Range-Expansions in genetischen Daten zu entdecken und Rückschlüsse auf die evolutionäre Vergangenheit von Populationen zu ziehen.
|
2 |
Characterization of Single Quantum Dot BlinkingAmecke-Mönnighoff, Nicole 30 June 2015 (has links) (PDF)
This thesis addresses the observed fluorescence intermittency of single semiconductor nanocrystals, so called Quantum Dots (QDs), which is also referred to as blinking. Despite continuous excitation their fluorescence is randomly interrupted by dark periods that can last over several minutes. Especially the extraction of power law dwell time statistics in bright and dark states indicates very complex underlying processes that are not fully understood to date. Here two approaches are followed to reveal the nature of the blinking mechanism.
One addresses the common threshold method for extraction of power law dwell times. Its performance is tested with simulations to a broad range of experimentally determined parameters. Strong deviations are found between input and extracted statistics dependent on input parameters themselves. A comparison with experimental data does not support the assignment of power law statistics for the bright state and indicates the existence of distinct blinking mechanisms.
The second approach directly aims at the nature of the dark state, which is mostly attributed to charges in the QD or trap states in its vicinity. A method is developed to detect charging processes on single QDs with their fluorescence. Electrochemistry is combined with confocal microscopy also allowing evaluations of excited state lifetimes and emission spectra. Reduction and oxidation of the QD bands are successfully observed as a quenching of QD fluorescence. Single QD observations identify two independent blinking mechanisms, that are assigned to positive and negative charging. Positive charging is not only observed after hole injection but also the extraction of excited electrons. Three additional quenching mechanisms are identified, two of which are assigned to trap relaxation. Differences between two substrate electrodes demonstrate the importance of the substrate material.
|
3 |
Characterization of Single Quantum Dot Blinking: Dwell Time Statistics and Electrochemical ControlAmecke-Mönnighoff, Nicole 20 May 2015 (has links)
This thesis addresses the observed fluorescence intermittency of single semiconductor nanocrystals, so called Quantum Dots (QDs), which is also referred to as blinking. Despite continuous excitation their fluorescence is randomly interrupted by dark periods that can last over several minutes. Especially the extraction of power law dwell time statistics in bright and dark states indicates very complex underlying processes that are not fully understood to date. Here two approaches are followed to reveal the nature of the blinking mechanism.
One addresses the common threshold method for extraction of power law dwell times. Its performance is tested with simulations to a broad range of experimentally determined parameters. Strong deviations are found between input and extracted statistics dependent on input parameters themselves. A comparison with experimental data does not support the assignment of power law statistics for the bright state and indicates the existence of distinct blinking mechanisms.
The second approach directly aims at the nature of the dark state, which is mostly attributed to charges in the QD or trap states in its vicinity. A method is developed to detect charging processes on single QDs with their fluorescence. Electrochemistry is combined with confocal microscopy also allowing evaluations of excited state lifetimes and emission spectra. Reduction and oxidation of the QD bands are successfully observed as a quenching of QD fluorescence. Single QD observations identify two independent blinking mechanisms, that are assigned to positive and negative charging. Positive charging is not only observed after hole injection but also the extraction of excited electrons. Three additional quenching mechanisms are identified, two of which are assigned to trap relaxation. Differences between two substrate electrodes demonstrate the importance of the substrate material.
|
Page generated in 0.0543 seconds